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Why control at the theoretical physics conference?
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Why control at the theoretical physics conference?

@ Think of it as a Modern Non-Equilibrium Stat Mech
e Applies, e.g., to Physical Systems (Lagrangian Swimmers)

@ Landau Institute type of topics

o Plenty of Universality (T exp)
o Some Relation to Instantons
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Linear System Driven by Multiplicative Noise

28 = 3 (my + oy} xi() + &) + us(t)
om= (m,-J- :Vi,j=1,---,d)=const

o o(t) = (oj(t):Vi,j) — zero-mean stochastic

&(t) = (&i(t) : Vi) — zero-mean white-Gaussian
u(t) )

o(t) — Multiplicative Stochastic

° %W =oW, W(t) - T exp

o Oseledets theorem: at t — oo, log(W™ W)/t — const
o WFf =cif;, \i =log|WF|/t, 1> 2> Ag
O P()‘lv T 7)‘d|t) oC exp (_t5(>\17 o 7)‘d))
o S(---) — Cramer function

(u;(t) : Vi) — vector of control

™ il = =
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Active & Passive Swimmers

@ u — control exerted by an active swimmer:
o keep in-sight

@ o(t) — fluctuating velocity gradient in “Batchelor" flow
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Dynamics of Temperature in Multi-Zone Buildings

9L = —co(T — To) — cs(T — T5)u(t) + &(t) [as seen from a zone]

Window —* &irFlaw 2 Damper
~=® Thermal Cougling [ ¥avbos

@ u(t) — control of the AHU opening

— @ Linearizing around “comfort"
' - temperature/efforts
o 0= _EO(I - To) - Cs(I - Ts)ﬂ
° o =c,+o(t)
o u(t)=u+ @0 (+ linear
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. ° ‘é—f = —c(¢)0 + £(t) — o(t)8
° To-out5|d§ and .TS_ e c(¢)=ctcap,co=c,+csu,c1 =
Air-Handling-Unit (AHU) (T — Ts),é(t) = &(t) + Too(t)

Michael (Misha) Chertkov — chertkov@arizona.edu Universality & Control of Fat Tails: arXiv:2303.09635



Multiplicative Noise

Multiplicative Noise
Fluid Mechanics: Swimmers
Thermal Control of Buildings

Dynamics of Temperature in Multi-Zone Buildings

Network (of zones) Generalization

e ({Tgti = —(ci(®) + 0io) i — 225 (Qij +0j) (0; — 6;) + &i(t)
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White-Gaussian-Multiplicative: Fokker-Planck

@ Multiplicative Noise = White Gaussian
o State Feedback Control: u(t) — w(x(t)) [prescribed]

@ = Fokker-Planck:
(8 (wi(x) 4+ myix;) + KijOxOx; + DikjiO xicOxx1) P(x|w) =0

Steady State Control

¢* = arg mqin C(¢), C(9)= /de(x\wd,)C(x, W)

Clx,wy) = Ce(wy) + Ce(x)

cost of control  cost of achieving the goal, e.g.(xxT)d/2

Consider Examples ...
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Control of Swimmers
u(t) — wy(r) = ¢r, C{w} — w?, Cy(r) — Br9

Batchelor-Kraichnan model

Vi, ki1 B [o3(8)ou(t))] = D(d + 1)a(t — ') (0% — L)

Fokker-Planck

A9 6+ (D(d - Vr +%) ) Prl9) =0

Optimal Solution

,i —¢/((d—1)D

P(rl¢) o (5 + (d — 1)r2)~#/(E71D)

"valid" at ¢ > (d — 1)dD/2

D(c42)(d—1}/43+D2(d+2)2(d—1)2
2

optimal: ¢®*) =
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Thermal Control (single zone)

Linear feedback, M-noise short correlated
Fokker-Planck — solution — optimal

_ /o"(E84) (o) 2%
o POl =By (1+2F)
® MgP-stable at ¢ > ¢(*) = (D(max(q,2) — 1) — co)/c1.
@ optimal: ¢* = 2D_Co+\/(i1D_COW

A
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Swimmers in Large Scale Flows

@ Implicit Solution:
r(e) = et W(2) (r(0) + fy dt'e?” WL(e)E())
@ Largest Lyapunov exponent: A\; = max; \;
@ Explicit Asymptotic: r(t) ~ exp (M (t) — ¢)t) ra > rq = /|N/k
@ Large t, Cramér function: P(A1|t) o exp (— tSl()\l))

@ From statistics of \; to statistics of r: P(r|t
- 2
exp (—t (51()\1) + ( |og( ) +é— )\1) 5" o ))
= ry 2 )\1 SN A1)
Pa(r) 2 o (%)%
t—00; r>ry

- r
@ Stationary if: ¢ > A\; +1/(25”(\1))
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General Model: Synthesis

Linear feedback: uj(t) = >_; ¢ijx;

x(t) = exp(—(m + ¢)t) W(1)X,

X stabilizes to a constant as t grows

log Pst(xF.T) oc 2f; (m + ¢) £ S”(0) log X)%

e 6 o6 o

(]

Dependence on X is “under logarithm" — thus weak and
replaced by xy4

o Statistics of any norm of x is equivalent to statistics of (xf")
associated with the largest Lyapunov exponent

use white- multiplicative noise

o when control is slower than 1/);
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General Considerations

Hamilton-Jacobi-Bellman (HJB)

o finite time horizon

o white — effectively short-correlated — multiplicative noise
@ cost-to-go (action): S(t,x) — function of t and x(t):
S(t,x) = min{u(t)} <5f(X(tf)) +
Jir dr B[C(x() u(r))] ), S(tr, x) = Se(x)
e HIB:
—9,5(t, x) = miny (C(x, u) + (a; + ui + myx;) B S(t, x) +
(K;,jaxiaxj = D,'k;j/XkaX,.X/axj) S(t, X))
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Swimmers: Stochastic Optimal Control

@ u is elongated with r: u=ur/r = C(u,r) = u?+ Bra
0 —8,5S=pri+ 529,41 (D(d — 1)r2 + k) 8,5 — 1 (8,5)’
@ optimal control: u*(t,r) = —9,5(t,r)/2

@ at g =2 S¢(r) is quadratic in r = S(t,r) = <(t)r* + s(t) =
dks +ds/dt =0, (d>+d —2)Ds — 2+ B +ds/dt =0

o =q(t)=13 (D(d +2)(d — 1) + /43 + D2(d + 2)3(d — 1)2

x tanh (=9 /431 D2(d + 2)2(d — 1)2) | where t; is tuned to
2

satisfy, S(tr, r) = S¢(r)
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Thermal: Stochastic Optimal Control

Multi-zone, short-correlated

@ Hamilton-Jacobi-Bellman: —9;S =

> (86117 + Dio(6:09,)%S + i}, S — LTI (5,5)%) +
iey
> (0i — 0;)(99, — ;) (cj + Dyj(0i — 0;) (99, — ;) S
{ijte€
o Linear-Quadratic-Gaussian: S(t,0) =, ; is;(t)0; + s(t)

e = system of generalized Riccati equations
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Conclusions & Path Forward

@ Analyzed linear dynamic system driven by additive and
multiplicative noise, stabilized by feedback

@ = algebraic tail (when stabilized)
@ Explicit expression for the tail' exponent

@ Examples from Fluid Mechanics (FM) and Civil Engineering
(CE)

@ Extend to complex cases — polymer solutions, multi-zone
engineered systems

@ Towards data driven approaches,
e.g. via reinforcement learning
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Conclusions & Path Forward

Support is Appreciated !
@ UArizona Funds
o |IEEE Control Syst. Lett.
2023

o Control & Decision
Conference 2023

@ arXiv:2303.09635

i ePPLIED MATHEMAT¥|¥[‘IS
Thanks for your attention |
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