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Why control at the theoretical physics conference?

Think of it as a Modern Non-Equilibrium Stat Mech
Applies, e.g., to Physical Systems (Lagrangian Swimmers)
Landau Institute type of topics

Plenty of Universality (T exp)
Some Relation to Instantons
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Linear System Driven by Multiplicative Noise
dxi
dt =

∑
j (mij + σij(t)) xj(t) + ξi (t) + ui (t)

m = (mij : ∀i , j = 1, · · · , d)=const
σ(t) = (σij(t) : ∀i , j) – zero-mean stochastic
ξ(t) = (ξi (t) : ∀i) – zero-mean white-Gaussian
u(t) = (ui (t) : ∀i) – vector of control

σ(t) – Multiplicative Stochastic
d
dtW = σW , W (t) – T exp

Oseledets theorem: at t → ∞, log(W+W )/t → const
Wfi = ci fi , λi = log |Wfi |/t, λ1 ≥ λ2 ≥ · · ·λd

P(λ1, · · · , λd |t) ∝ exp (−tS(λ1, · · · , λd))
S(· · · ) – Crámer function
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Active & Passive Swimmers

−α
(
dr
dt − σ(t)r

)
= u(t) + ξ(t)

u – control exerted by an active swimmer:
keep in-sight

σ(t) – fluctuating velocity gradient in “Batchelor" flow
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Dynamics of Temperature in Multi-Zone Buildings
dT
dt = −co(T − To)− cs(T − Ts)u(t) + ξ(t) [as seen from a zone]

To-outside and Ts -
Air-Handling-Unit (AHU)
co and cs exchange rates

u(t) – control of the AHU opening
Linearizing around “comfort"
temperature/efforts

0 = −co(T − To)− cs(T − Ts)u
co = co + σ(t)
u(t) = u + ϕθ (+ linear
feedback)
θ = T − T

dθ
dt = −c(ϕ)θ + ξ̃(t)− σ(t)θ

c(ϕ) = c0+c1ϕ, c0 = co+csu, c1 =
cs(T − Ts), ξ̃(t) = ξ(t) + Toσ(t)
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Dynamics of Temperature in Multi-Zone Buildings

Network (of zones) Generalization
dθi
dt = − (ci (ϕ) + σio) θi −

∑
j∼i

(
c ij + σij

)
(θi − θj) + ξi (t)
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White-Gaussian-Multiplicative: Fokker-Planck

Multiplicative Noise = White Gaussian
State Feedback Control: u(t) → w(x(t)) [prescribed]
⇒ Fokker-Planck:(
∂xi (wi (x) +mijxj) + κij∂xi∂xj + Dik;jl∂xi xk∂xj xl

)
P(x |w) = 0

Steady State Control

ϕ∗ = argmin
ϕ

C̄ (ϕ), C̄ (ϕ) =

∫
dxP(x |wϕ)C (x ,wϕ)

C (x ,wϕ) = Cc(wϕ)︸ ︷︷ ︸
cost of control

+ Cg (x)︸ ︷︷ ︸
cost of achieving the goal, e.g.(xxT )q/2

Consider Examples ...
Michael (Misha) Chertkov – chertkov@arizona.edu Universality & Control of Fat Tails: arXiv:2303.09635
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Control of Swimmers
u(t) → wϕ(r) = ϕr , Cc{w} → w2, Cg (r) → βrq

Batchelor-Kraichnan model

∀i , j , k, l : E
[
σij (t)σkl (t

′)
]
= D(d + 1)δ(t − t′)

(
δjlδik − δijδkl+δjkδil

d+1

)

Fokker-Planck

r1−d d
dr r

d
(
ϕ+ 1

2

(
D(d − 1)r + κ

r

)
d
dr

)
P(r |ϕ) = 0

Optimal Solution

P(r |ϕ) ∝
(
κ
D + (d − 1)r2)−ϕ/((d−1)D)

"valid" at ϕ > (d − 1)dD/2

optimal: ϕ(∗) =
D(d+2)(d−1)+

√
4β+D2(d+2)2(d−1)2

2
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Thermal Control (single zone)

Linear feedback, M-noise short correlated

Fokker-Planck → solution → optimal(
∂θc(ϕ)θ + κ∂2

θ + D(∂θθ)
2)P(θ|ϕ) = 0

P(θ|ϕ)=
√

D
πκ

Γ
(

c(ϕ)
2D +1

2

)
Γ
(

c(ϕ)
2D

) (
1+Dθ2

κ

)− 1
2−

c(ϕ)
2D

MqP-stable at ϕ > ϕ(s) = (D(max(q, 2)− 1)− c0)/c1.

optimal: ϕ∗ =
2D−c0+

√
(2D−c0)2+βc2

1
c1
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Swimmers in Large Scale Flows

Implicit Solution:
r(t) = e−ϕtW (t)

(
r(0) +

∫ t

0 dt ′eϕt
′
W−1(t ′)ξ(t ′)

)
Largest Lyapunov exponent: λ1 = maxi λi

Explicit Asymptotic: r(t) ≈ exp ((λ1(t)− ϕ)t) rd ≫ rd =
√
|λ|/κ

Large t, Cramér function: P(λ1|t) ∝ exp (−tS1(λ1))

From statistics of λ1 to statistics of r : P(r |t) r
d−1

rdd
→

exp

(
−t

(
S1(λ̄1) +

(
1
t log

(
r
rd

)
+ ϕ− λ̄1

)2
S ′′

1 (λ̄1)

))
→
∣∣∣
t→∞; r≫rd

Pst(r)
rd−1

rdd
∝
(
rd
r

)2(ϕ−λ̄1)S
′′
1 (λ̄1)

Stationary if: ϕ > λ̄1 + 1/(2S ′′(λ̄1))
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General Model: Synthesis

Linear feedback: ui (t) →
∑

j ϕijxj

x(t) = exp(−(m + ϕ)t)W (t)x̃ ,
x̃ stabilizes to a constant as t grows
logPst(xf T

i ) ∝ 2fi (m + ϕ) f T
i S ′′

i (0) log
xd

xf T
i

Dependence on x̃ is “under logarithm" – thus weak and
replaced by xd

Statistics of any norm of x is equivalent to statistics of (xf T
1 )

associated with the largest Lyapunov exponent

use white- multiplicative noise

when control is slower than 1/λ̄1
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General Considerations

Hamilton-Jacobi-Bellman (HJB)

finite time horizon
white – effectively short-correlated – multiplicative noise
cost-to-go (action): S(t, x) – function of t and x(t):
S(t, x) = min{u(t)}

(
Sf (x(tf )) +∫ tf

t dτ E [C (x(τ),u(τ))]
)
, S(tf , x) = Sf (x)

HJB:
−∂tS(t, x) = minu

(
C (x ,u) +

(
ai + ui +mijxj

)
∂xiS(t, x) +(

κij∂xi∂xj + Dik;jlxk∂xi xl∂xj
)
S(t, x)

)
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General Considerations
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Swimmers: Stochastic Optimal Control

u is elongated with r : u = ur/r ⇒ C (u, r) = u2 + βrq

−∂tS = βrq + r1−d

2 ∂r r
d−1

(
D(d − 1)r2 + κ

)
∂rS − 1

4 (∂rS)
2

optimal control: u∗(t, r) = −∂rS(t, r)/2

at q = 2 Sf (r) is quadratic in r ⇒ S(t, r) = ς(t)r2 + s(t) ⇒
dκς + ds/dt = 0, (d2 + d − 2)Dς − ς2 + β + dς/dt = 0

⇒ ς(t) = 1
2

(
D(d + 2)(d − 1) +

√
4β + D2(d + 2)2(d − 1)2

× tanh
(

(t1−t)
2

√
4β + D2(d + 2)2(d − 1)2

))
where t1 is tuned to

satisfy, S(tf , r) = Sf (r)
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Thermal: Stochastic Optimal Control

Multi-zone, short-correlated
Hamilton-Jacobi-Bellman: −∂tS =∑
i∈V

(
βi |θi |q + Dio(θi∂θi )

2S + κi∂
2
θi
S − c2

is(T−Ts)2

4αi
(∂θiS)

2
)
+∑

{i ,j}∈E
(θi − θj)(∂θi − ∂θj )

(
c ij + Dij(θi − θj)(∂θi − ∂θj )

)
S

Linear-Quadratic-Gaussian: S(t,θ) =
∑

i ,j θi ςij(t)θj + s(t)

⇒ system of generalized Riccati equations
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Analyzed linear dynamic system driven by additive and
multiplicative noise, stabilized by feedback
⇒ algebraic tail (when stabilized)
Explicit expression for the tail’ exponent
Examples from Fluid Mechanics (FM) and Civil Engineering
(CE)

Extend to complex cases – polymer solutions, multi-zone
engineered systems
Towards data driven approaches,
e.g. via reinforcement learning
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