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 Introduction.

 Combined symmetry breaking and multiple topological defects in 
spin density waves (SDW). 

 Phase, magnetic, and complex non-integer vortices.
 Spin anisotropy and confinement of vortices
 Narrow band noise (NBN) from phase slipes – instantons
 Related objects: hole motion in a dopped antiferromagnet,

combined solitons
 Conclusions 



Observable collective effects related to the phase  degeneracy

• Fröhlich conduction by the collective sliding t.

• Topological defects: solitons, dislocations (electronic vortices). 

• Phase slips = instantons = spacio-temporary vortices

• Conversion among normal and condensed electrons by winding of 
the phase increment over the sample

Our interest lies in richer incommensurate superstructures:
charge density waves (CDW), spin density waves (SDW), Wigner crystals 
Typically they are weak, almost sinusoidal superstructures cos(Qx+ ) 
They possess a complete translational degeneracy exposed by the 
arbitrary displacement of the phase .
There are common features of incommensurate CDWs, SDWs, WCs 
related to their phase  degree of freedom: 
complex order parameters 𝜂 = A exp[i] , 𝜂 = Am exp[i]
collective charge nc∂x and current jc-∂t densities
Phase increment /2 controlling the number of condensed fermions
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Linear approximation, constant amplitude, exclude electric potential and 
carriers,Fourrier representation 𝜑𝑘 and 𝑖𝑘∥𝜑𝑘 for the phase and the charge 
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𝑟0 − short screening length in the parent metal

𝑟𝑠𝑐𝑟
2 = 𝑟0

2/𝜌𝑛 − the acual long screening length in the DW

𝜌𝑐, 𝜌𝑛=1-𝜌𝑐 condensate and normal carriers densities.

𝜌𝑛 →1 at T →Tc and 𝜌𝑛~exp −Δ/𝑇 vanishes at low 𝑇

𝐶∥
0 = 𝜌𝑐 and 𝐶⊥~𝐴

2 - compression and shear moduli

Energetics of dislocations is determined by strong Coulomb forces limited 
only by screening facilities of free carriers which freeze out at low T.

Common peculiarity of DWs:

Coulomb hardening, anomalous elastic theory and strong 

confinement of phase vortices
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𝒓⊥ < 𝒓𝟎 : Coulomb interaction is not important standard elastic 

theory conventional energy for the pair of dislocations at a

𝒓
⊥
=𝑹⊥
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𝒓
⊥
≫ 𝒓𝒔𝒄𝒓:Coulomb interaction is screened, qualitatively a 

normal elastic theory but in stretched coordinates

(𝒙 𝑪⊥𝝆𝒏/𝝆𝒄 , r
⊥
) which inclination diverges at  low T

Again the logarithmic vortex energy but with the energy scale 

greatly enhanced as rscr /r0=1/ 𝝆𝒏
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𝒓𝟎 < 𝒓
⊥
< 𝒓𝒔𝒄𝒓 ∶

nonlocal elastic theory with energy dependent on ratio of

gradients rather on their values

𝑊 𝜑 ≈
ℏ𝑣𝐹
4𝜋
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2

Curious confinement law is with 𝑾𝒅𝒊𝒔𝒍~𝑻𝒄 𝑹⊥/𝒓𝟎

A constant force F acting 

upon the D-line

Perimetric instead of logarithmical law.



Order parameter and allowed topological defects   η →η

CDW SDW 

ηCDW=Aexp(iQr+ ) ηSDW=Amexp(iQr+ ) 

m is the unit vector of the 

staggered magnetization

• Phase vortex, dislocation, 

2 translation: 

+2, mm

 normal m - vortex, 

2 rotation: 

m O2 m, 

 combined object :

+, m O m = -m

 Phase vortex, 

dislocation, 2

translation: 

+2

 Amplitude soliton : 

=const

 combined object : 

amplitude-phase soliton

+, A =-1→A=+1

CDW =|CDW| cos(Qx+) SDW =|SDW|2 cos(2Qx+2)



Energy of the vortex with the winding number z: Wm~Tcsz
2

Energy of the dislocation (z =1) : W~Tc(s/n)z
2

In general if z2(z/2)  then  WW/2

Only smallest z are stable

T~Tc :  W ~  Wm all 

energies are comparable

 Normal dislocation

 Half-dislocation combined 

with semi-vortex

 Normal magnetic vortex

Result depends on numbers.

T<<Tc :    W >> Wm

 Half-dislocation combined with 

semi-vortex –

 obligatory decoupling of the 

dislocation

Phase vortex and magnetic vortex

 =1/2, m=1/2

=1 W = ( W +Wm)/2 =W/2

 =1/2, m=1/2



𝐹 = න𝑑𝑥 𝑑𝑦
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2
+ 𝐹(𝑛, 𝐴)

𝜋𝑛𝑐 = 𝐴2𝜕𝑥𝜑 𝜋𝑗𝑐 = −𝐴2𝜕𝑡𝜑

𝜋𝑛𝑠 = 𝐴2𝜕𝑥𝜃 𝜋𝑗𝑠 = −𝐴2𝜕𝑡𝜃

Charge and charge current condensate densities

Spin  and spin current condensate densities

Modeling of topological defects in a SDW. Energy 

functional for a planar SDW m={cos 𝜽 , sin 𝜽}
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Problem of choosing variables for the numerical modeling.
The energy, density, current are simple and transparent in 
variables of the  amplitude and the phase. But for vortices the 
phase is not uniquely defined which prevents their appearance in 
calculations. E.g. for a CDW the non-invariant but unique pair {u,v} 
has to be used: =u+iv rather than =Aexp(i)
For a planar SDW, with m={cos,sin} the natural choice seems to 
be the spherical vector for the 3-degrees of freedom
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𝜳 = 𝐴𝑒𝑖𝜑 𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃 →

S= 𝑢, 𝑣, 𝑤 = 𝐴 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜑, 𝐴 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜑, 𝐴 𝑐𝑜𝑠𝜃

𝜳 = 𝑢 + 𝑖𝑣
𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
, 1 = 𝑢 + 𝑖𝑣

±𝑤

𝑢2 + 𝑣2
, 1

𝐴2 = 𝑢2 + 𝑣2 + 𝑤2
𝑐𝑜𝑠𝜃 =

𝑤

𝐴
; 𝑡𝑎𝑛𝜑 =

𝑣

𝑢

We should use the spherical vector for the 3-degrees of freedom

𝜕𝜃 =
𝑤 𝑢𝜕𝑢 + 𝑣𝜕𝑣 − 𝑢2 + 𝑣2 𝜕𝑤

𝐴 𝑢2 + 𝑣2
𝜕𝜑 =

𝑢𝜕𝑣 − 𝑣𝜕𝑢

𝑢2 + 𝑣2

Quite difficult for computations expressions still are not sufficient.
The sign of 𝒔𝒊𝒏𝜽 is not unique, notice ±𝒘, preventing vortex 
configuration.
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We were forced to use a more complex quaternion representation 

It yields even more ugly expressions for derivatives and, worse, 
the constraint which adds a time-independent equation 
preventing facilities of efficient Cauchy's t algorithms in favor 
of more cumbersome finite element methods.

An over-complete set of four bilinear combinations
{f, g, h, j} = {up, uq, p, q} imposing the apparent constant fh = gj.

Amexp(i𝜑)= (u + iv ){p, q}.

𝑨𝟐 = 𝒇𝟐 + 𝒈𝟐 + 𝒉𝟐 + 𝒋𝟐

tg𝝋 = 𝒉/𝒇; 𝒄𝒕𝒈𝜽 = 𝒉/𝒋



The vector field of the 
local SDW magnetization 
for the a chimer.
The chain axis is 
horizontal.

SDW: modeling for splitting of one charge vortex = 

dislocation into two combined vortices

(chimers of half-spin+half-charge)



Spin – orbital coupling (Anisotropy)

The two  phase vortices  will be bound by a string - the Neel domain wall.

With known parameters, the string length may reach the  sample width.

Wm ~ (im)2 +l-2 mz
2 ]

l - the wall’s width

 semi-vortex  180o domain 
wall

Spin anisotropy costs diverging energy. That confines any spin 
vortex to the domain walls.



Splitting of the  2 phase vortex into two half-dislocations

bound by the string of the180o domain wall 

r<rscr :  Energy lost  Wm= Wwall N , N – distance in chains number

Energy gain WDisl. = -E0N/2, Wwall<<E0    

E0 > W - constant repulsion wins against constant  attraction 

r>rscr :  Energy lost : Wm= Wwall N

Energy gain : WDisl. = -(E0/2n
1/2)lnN+ Wwall N

Equilibrium distance between half dislocations

N~ E0/(n
1/2WmDW ) 

n
-1/2 factors – recall the Coulomb hardening

Coulomb deconfinement against anisotropy confinement



Narrow Band Noise Generation 

Sliding Charge/Spin Density Waves generate  the Narrow Band Noise 

(NBN) - a coherent periodic unharmonic signal with the fundamental 

frequency   being proportional to the mean  dc sliding current j 

with the universal (in CDWs) ratio   /j =. 

CDW   : CDW =A cos(Qx+);   /j= .

Realization of real time instantons - phase slips (x,t) sequence 



Competing models:

The Wash-Board Frequency (WBF) model : NBN is 

generated extrinsically while the DW modulated charge 

passes through the host lattice sites or its defects.

But : 

(i)The interaction between the rigid DW and the 

regular host lattice Vhost~cos(Qx+nt), (usually 

n=4)→ an n-fold WBF contrary to experiments. 

(ii)Interaction with the host impurities Vimp

~ cos(Qxi + t ) 

the positionally random phase shifts –Qxi prevent any 

coherence in the linear response  Problem of space 

synchronization

CDW   CDW =|CDW| cos(Qx+)  /j= . 

SDW  SDW =|SDW|2 cos(2Qx+2)  /j = 2. 
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Phase Slip Generation (PSG) model: the NBN 

is generated by the phase slips occurring near 

injecting contacts.

An old question of time synchronization 

Our modeling confirms a regularity as  shown by 

a remarkably high coherence of the NBN in 

experiments



DW does not slide at the sample side surface,  coupling 

cos(ϕbulk – ϕsurface) with ϕbulk ∝ t and ϕsurface = cnst provides a 

necessary WBF. Bridge to our PSG modeling with constant 

boundary conditions.

Phase

Amplitude

/π

Phase

Our point of view:     Contrary to CDW the fundamental 
ratio NBN frequency to DC current is not the universal 
parameter, changing from ½ near Tc to 1 at T<< Tc  and 
being restorted to ½ in case of magnetic anisotropy.



The motion permutes AFM sublattices ↑,↓ creating a string of  
the reversed order parameter: staggered magnetization.  
The lost interaction energy with neighboring lines grows linearly –
the string  blocks the hole propagation (the modern “fraction”).

Adding the semi-vorticity of AFM magnetization to the string end heals 
the permutation, allowing  for propagation of the combined particle.

sp
in

 r
o

ta
ti

o
n

s spin flipping

by hole motion

Bulaevskii, Khomskii, 
Nagaev.
Brinkman and Rice.

Related systems I. hole in the antiferromagnetc AFM environment 

+1/2

-1/2



Quasi 1D, half filled band with repulsion, gap in charge phase, free 
spin phase, bosonization language. 

1D~()2 -Ucos(2)+()2

U - Umklapp amplitude 
 - chiral phase of charge displacements
 - chiral phase of spin rotations.
Degeneracy of the ground state:

+π =  translation by one site
Staggered magnetization  AFM=SDW order parameter:
OSDW ~ Acos() exp{i(Qx+)} , amplitude A= cos() changes the sign
To survive in D>1 :  The  soliton in  : cos   - cos 

enforces  a  rotation in  to preserve OSDW

Related systems II : SDW route to the doped  Mott-
Hubbard insulator.



Related systems III : Singlet systems: half-integer vortices in a 
superconductor SC with a partial spin polarization – FFLO 
phase of stripes with alternating signs of the amplitude of 
the SC order parameter.

+ - +/-

+

+

-/+ - +

Defect is embedded into the regular stripe structure (black lines).
+/- are the alternating signs of the order parameter amplitude. 
Termination points of a finite segment L (red color) of the zero line 
must be encircled by semi-vortices of the  rotation (blue circles)
to resolve the signs conflict.



Spatial Line Nodes and Fractional Vortex 
Pairs in the FFLO Vortex State of 
Superconductors
D. F. Agterberg, Z. Zheng, and S. Mukherjee

2008

Vortex molecules in coherently
coupled two-component Bose-
Einstein condensates
K. Kasamatsu, M.Tsubota, and M. 
Ueda 2004

A numerical solution of discretized Bogolubov-De Gennes eqs. 
At presence of unpaired spins, the vortex created by rotation 
(magnetic field) splits into two semi-vortices.

The microscopic modeling of the vortices splitting in a SC:



RESOLUTION – combined 
symmetry U1/Z2 of the order 
parameter  Aexp(i)

Amplitude soliton (kink) A -A
together with ½-integer vortex 

of the phase →+π, 
leaves invariant the order 

parameter

Experimental puzzle and inspiration:

Topologically nontrivial (amplitude) solitons were 

observed in 3D ordered phase, at T <Tc. 

Obstacle:  topological confinement :

Commutation between equivalent states on the chain results in 

loss of inter-chain energy ~ total length: «confinement of kinks» 

We need to activate other modes to cure the defect

core :
the kink –spin
carrier

flux lines
of ½ -
vortices

Amplitude kinks in systems with complex order parameter : CDW, SC
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First proposal
(Volovik and Mineev 1976) A phase in superfluid He3
Never observed because of spin-orbital and dipole energies

Common basis:
multiplicative order parameter O=O1xO2 … factors possess 
degeneracies in different degrees of freedom.

Common obstacle:
weak perturbations reducing at least one of continuous symmetries to 
discrete one, like spin anisotropy in SDWs.

Half integer vortices:   other examples in condensed matter.

𝜟′ × 𝜟′′ = 𝒍 − orbital momentum of the Cooper pair

𝑂𝛼𝑘 = 𝐴𝒎𝛼 𝜟𝒌
′ + 𝒊𝜟𝒌

′′



More recent hopes: 
triplet superconductivity in SrRuO3

Probably observed in nano-scale samples where the anisotropy 
energy had no volume to develop. J. Jang, et al, Science 331, 186 
(2011). 

Polariton condensate with the vector order parameter of condensed 
photons
Predicted by Rubo and soon clearly observed in Lagourdakis, et al, 
Science 326, 974 (2009). 



Conclusion 

 Topologically nontrivial dynamics appears under applied fields or charge 
injection

 In SDW at low temperature,  conventional dislocations loose their priority in 
favor of “himers” – the  complex topological objects: a half-integer dislocation 
combined with a semi-vortex of the staggered magnetization .

 The combined topological objects are stabilized by lowering the Coulomb energy 
of dislocations especially important at low temperatures (Coulomb hardening)

 At presence of the magnetic anisotropy, the two combined objects are connected 
by the string – Neel domain wall. 

 Contrary to CDW the fundamental ratio NBN frequency to DC current is not the 
universal parameter, changing from ½ near Tc to 1 at T<< Tc  and being restorted
to ½ in case of magnetic anisotropy.

 The numeric procedure needs to be stabilized for the nonanalytic eqs


