

Generalized multifractality at 2D Anderson transitions

Alexander D. Mirlin Karlsruhe Institute of Technology J.F. Karcher, N. Charles, I.A. Gruzberg, A.D.M., Ann.Phys. 435, 168584 (2021)

- J.F. Karcher, I.A. Gruzberg, A.D.M., PRB 105, 184205 (2022)
- J.F. Karcher, I.A. Gruzberg, A.D.M., PRB 106, 104202 (2022)
- J.F. Karcher, I.A. Gruzberg, A.D.M., PRB (Letter) 107, L020201 (2023)
- J.F. Karcher, I.A. Gruzberg, A.D.M., PRB 107, 104202 (2023)
- S.S. Babkin, J.F. Karcher, I.S. Burmistrov, A.D.M., arXiv (2023)
- J. Karcher, Karlsruhe \rightarrow Penn State
- I. Gruzberg, Ohio
- N. Charles, Ohio
- S. Babkin, IST Austria
- I. Burmistrov, Landau Inst.

related preceding papers:

I.A.Gruzberg, A.W.W.Ludwig, A.D.M., M.R.Zirnbauer, PRL 107, 086403 (2011)

I.A. Gruzberg, A.D.M., M.R. Zirnbauer, PRB 87, 125144 (2013)

Anderson localization

Philip W. Anderson

1958 "Absence of diffusion in certain random lattices"

Quantum particle moving in a random potential

sufficiently strong disorder \longrightarrow quantum localization

- \longrightarrow eigenstates exponentially localized, no diffusion
- \longrightarrow Anderson insulator

Nobel Prize 1977

Anderson Metal-Insulator Transitions

Connection with scaling theory of critical phenomena: Thouless '74; Wegner '76

Scaling theory of localization: Abrahams, Anderson, Licciardello, Ramakrishnan '79 scaling variable: dimensionless conductance $g = G/(e^2/h)$

RG for field theory: non-linear σ -model Wegner '79

d > 2: Anderson metal-insulator transition

in some symmetry classes there is an Anderson MIT also in 2D

review: Evers, ADM, Rev. Mod. Phys. 80, 1355 (2008)

Field theory: non-linear σ -model

action:

$$S[Q] = {\pi
u \over 4} \int d^d {
m r} ~{
m Tr} ~[-D(
abla Q)^2 - 2i \omega \Lambda Q], \qquad Q^2({
m r}) = 1$$

Wegner'79

 σ -model manifold: symmetric space

e.g., unitary Wigner-Dyson symmetry class:

- bosonic replicas: $\mathcal{M}_B = \mathrm{U}(n,n)/\mathrm{U}(n) imes \mathrm{U}(n) \;, \qquad n o 0$ non-compact ("hyperboloid")
- fermionic replicas: $\mathcal{M}_F = \mathrm{U}(2n)/\mathrm{U}(n) imes \mathrm{U}(n) \ , \qquad n o 0$ compact ("sphere")
- supersymmetry (Efetov'83): $\mathcal{M} = U(1, 1|2)/U(1|1) \times U(1|1)$ $\mathcal{M} = \{\mathcal{M}_B \times \mathcal{M}_F\}$ "dressed" by anticommuting variables

Anderson localization and topology

Paradigmatic example: Integer Quantum Hall Effect

von Klitzing '80 ; Nobel Prize '85

Field theory:

 σ -model with topological term

$$S = \int d^2 r \left\{ -rac{\sigma_{xx}}{8} {
m Tr} (\partial_\mu Q)^2 + rac{\sigma_{xy}}{8} {
m Tr} \epsilon_{\mu
u} Q \partial_\mu Q \partial_
u Q
ight\}$$

Also: Anderson-localization critical theories emerge on surfaces of disordered topological insulators and superconductors.

Multifractality at Anderson transitions

 $P_q = \int d^d r |\psi({
m r})|^{2{
m q}}$ inverse participation ratio

$$\langle P_q
angle \sim \left\{egin{array}{ll} L^0 & ext{insulator} \ L^{- au_q} & ext{critical} \ L^{-d(q-1)} & ext{metal} \end{array}
ight.$$

wave function statistics:

$$\mathcal{P}(\ln|\psi^2|) \sim L^{-d+f(\ln|\psi^2|/\ln L)}$$

 $L^{f(lpha)}$ – measure of the set of points where $|\psi|^2 \sim L^{-lpha}$

Example: Multifractality at the Quantum Hall transition

Multifractality in terms of local DOS

LDOS moments at criticality $\langle
ho^q
angle \sim L^{-x_q}$

• Wigner-Dyson classes: average LDOS $\langle \rho \rangle$ is not critical

$$x_1\equiv 0 \qquad \qquad x_q\equiv \Delta_q$$

• Unconventional classes (chiral or particle-hole symmetry): average LDOS in general critical $\langle \rho \rangle \sim L^{-x_1}$

$$\Delta_q = x_q - q x_1$$

Symmetry of multifractal spectra (Wigner-Dyson classes)LDOS distribution in σ -modelADM, Fyodorov '94Fyodorov, Savin, Sommers '04-05

+ universality \longrightarrow exact symmetry of a multifractal spectrum:

$$\Delta_q = \Delta_{1-q}$$
 $f(2d-\alpha) = f(\alpha) + d - \alpha$

ADM, Fyodorov, Mildenberger, Evers '06

ightarrow probabilities of unusually large and unusually small $|\psi^2(r)|$ are related !

Disordered electronic systems: 10 symmetry classes

	\hat{T}	\hat{P}	\hat{C}	\mathbf{symbol}
unitary				A
orthogonal	1			AI
$\operatorname{symplectic}$	-1			AII

Chiral classes

	\hat{T}	\hat{P}	\hat{C}	symbol
unitary			1	AIII
orthogonal	1	1	1	BDI
symplectic	-1	-1	1	\mathbf{CII}

Bogoliubov-de Gennes classes

\hat{T}	\hat{P}	\hat{C}	\mathbf{symbol}
	-1		\mathbf{C}
1	-1	1	\mathbf{CI}
	1		D
-1	1	1	DIII

\hat{T}	- antiunitary,	commutes	with	H,
	$\hat{T}^2=\pm 1$			

- \hat{C} unitary, anticommutes with H, $\hat{C}^2 = 1$
- \hat{P} antiunitary, anticommutes with H, $\hat{P}^2 = \pm 1$

$$H=\left(egin{array}{cc} \mathbf{0} & \mathbf{t} \ \mathbf{t}^{\dagger} & \mathbf{0} \end{array}
ight)$$

$$H = \left(egin{array}{cc} \mathbf{h} & \mathbf{\Delta} \ -\mathbf{\Delta}^* & -\mathbf{h}^T \end{array}
ight)$$

Altland, Zirnbauer '97

Disordered electronic systems: Sigma-model target spaces

Symmetry	$ m NL\sigma M$	Compact (fermionic)	Non-compact (bosonic)
Class	(n-c c)	space	space
A	AIII AIII	$\mathrm{U}(2n)/\mathrm{U}(n) imes\mathrm{U}(n)$	$\mathrm{U}(n,n)/\mathrm{U}(n) imes\mathrm{U}(n)$
AI	BDI CII	$\mathrm{Sp}(4n)/\mathrm{Sp}(2n) imes\mathrm{Sp}(2n)$	$\mathrm{SO}(n,n)/\mathrm{SO}(n) imes\mathrm{SO}(n)$
AII	CII BDI	$\mathrm{SO}(2n)/\mathrm{SO}(n) imes\mathrm{SO}(n)$	$\mathrm{Sp}(2n,2n)/\mathrm{Sp}(2n) imes\mathrm{Sp}(2n)$
AIII	A A	$\mathrm{U}(n)$	$\mathrm{GL}(n,\mathbb{C})/\mathrm{U}(n)$
BDI	AI AII	$\mathrm{U}(2n)/\mathrm{Sp}(2n)$	$\operatorname{GL}(n,\mathbb{R})/\operatorname{O}(n)$
CII	AII AI	$\mathrm{U}(n)/\mathrm{O}(n)$	$egin{array}{l} { m GL}(n,\mathbb{H})/{ m Sp}(2n)\ \equiv { m U}^*(2n)/{ m Sp}(2n) \end{array}$
С	DIII CI	$\mathrm{Sp}(2n)/\mathrm{U}(n)$	$\mathrm{SO}^*(2n)/\mathrm{U}(n)$
CI	$\mathbf{D} \mathbf{C}$	$\operatorname{Sp}(2n)$	$\mathrm{SO}(n,\mathbb{C})/\mathrm{SO}(n)$
BD	CI DIII	$\mathrm{O}(2n)/\mathrm{U}(n)$	$\mathrm{Sp}(2n,\mathbb{R})/\mathrm{U}(n)$
DIII	C D	$\mathrm{O}(n)$	$\mathrm{Sp}(2n,\mathbb{C})/\mathrm{Sp}(2n)$

Zirnbauer '96

Generalized multifractality: Eigenfunction pure-scaling observables

 $\lambda = (q_1, \ldots, q_n)$ labels representations.

Here q_j can be in general arbitrary complex numbers.

Building blocks:
$$\lambda = \underbrace{(1, \dots, 1)}_{m \text{ times}} \equiv (1^m)$$

"Spinless" symmetry classes: neither $\hat{T}^2 = -1$ nor $\hat{P}^2 = -1$ \longrightarrow classes A, AI, AIII, BDI, D

$$P_{(1^m)}[\psi] = \left|\det(\psi_i(\mathbf{r}_j))_{m imes m}
ight|^2 \equiv \left|\detegin{pmatrix}\psi_1(\mathbf{r}_1)&\psi_2(\mathbf{r}_1)&\ldots&\psi_m(\mathbf{r}_1)\\psi_1(\mathbf{r}_2)&\psi_2(\mathbf{r}_2)&\ldots&\psi_m(\mathbf{r}_2)\dots&dots&dots&dots&dots\\psi_1(\mathbf{r}_m)&\psi_2(\mathbf{r}_m)&\ldots&\psi_m(\mathbf{r}_m)\end{pmatrix}
ight|$$

 $\mathrm{r}_1,\ldots\mathrm{r}_\mathrm{m}-\mathrm{close} ext{ spatial points}, \quad \psi_1,\ldots\psi_m-\mathrm{close-in-energy eigenfunctions}$ For arbitrary $\lambda=(q_1,\ldots,q_n)$:

$$P_{\lambda}[\psi] = (P_{(1^1)}[\psi])^{q_1-q_2} (P_{(1^2)}[\psi])^{q_2-q_3} \cdots (P_{(1^{n-1})}[\psi])^{q_{n-1}-q_n} (P_{(1^n)}[\psi])^{q_n}$$

 $\langle P_{\lambda}[\psi] \rangle$ are pure-scaling eigenfunction observables. The proof goes via a mapping to the sigma model.

Generalized multifractality: Eigenfunction pure-scaling observables. Spinful case "Spinful" symmetry classes: either $\hat{T}^2 = -1$ or $\hat{P}^2 = -1$ (or both) Kramers-type (near-)degeneracy, classes AII, CII, C, CI, DIII \rightarrow Building blocks: $\lambda = (1^m)$ $P_{(1^m)}[\psi] = \det \left(rac{(\psi_{i,\uparrow}(\mathbf{r}_j))_{m imes m} \mid (\psi_{ar{\imath},\uparrow}(\mathbf{r}_j))_{m imes m}}{(\psi_{i\downarrow}(\mathbf{r}_i))_{m imes m} \mid (\psi_{ar{\imath},\uparrow}(\mathbf{r}_i))_{m imes m}}
ight)$ $=\detegin{pmatrix} \psi_{1,\uparrow}(\mathbf{r}_1)\ \ldots\ \psi_{m,\uparrow}(\mathbf{r}_1)\ arphi_{ar{1},\uparrow}(\mathbf{r}_1)\ \ldots\ \psi_{ar{m},\uparrow}(\mathbf{r}_1)\ arphi\ arphi_{ar{1},\uparrow}(\mathbf{r}_m)\ \ldots\ arphi_{ar{m},\uparrow}(\mathbf{r}_m)\ arphi\ arphi_{ar{1},\uparrow}(\mathbf{r}_m)\ \ldots\ arphi_{ar{m},\uparrow}(\mathbf{r}_m)\ arphi_{ar{1},\uparrow}(\mathbf{r}_m)\ \ldots\ arphi_{ar{m},\uparrow}(\mathbf{r}_m)\ arphi\ arphi_{ar{1},\downarrow}(\mathbf{r}_1)\ \ldots\ arphi_{ar{m},\downarrow}(\mathbf{r}_1)\ arphi\ arphi_{ar{1},\downarrow}(\mathbf{r}_1)\ \ldots\ arphi_{ar{m},\downarrow}(\mathbf{r}_1)\ arphi\ arphi_{ar{m},\downarrow}(\mathbf{r}_1)\ arphi\ (arphi\ arphi\ arphi\$

For arbitrary $\lambda = (q_1, \ldots, q_n)$:

$$P_{\lambda}[\psi] = (P_{(1^1)}[\psi])^{q_1-q_2} (P_{(1^2)}[\psi])^{q_2-q_3} \cdots (P_{(1^{n-1})}[\psi])^{q_{n-1}-q_n} (P_{(1^n)}[\psi])^{q_n}$$

 $\langle P_{\lambda}[\psi] \rangle$ are pure-scaling eigenfunction observables. The proof goes via a mapping to the sigma model.

Example of spatial distribution of building blocks $L^2 P_{(1)}[\psi], \quad L^2 \left(P_{(1,1)}[\psi]\right)^{1/2},$ and $L^2 \left(P_{(1,1,1)}[\psi]\right)^{1/3}$ for 2D metal-insulator transition of class AII

Scaling operators in sigma-model formalism

• Spinless classes: σ -model composite operators corresponding to wave function correlators $P_{\lambda}[\psi] \equiv P_{(q_1,...,q_n)}[\psi]$ are

$$\mathcal{P}_{\lambda}(Q) \equiv \mathcal{P}_{(q_1,...,q_n)}(Q) = d_1^{q_1-q_2} d_2^{q_2-q_3} \dots d_n^{q_n}$$

 d_j — principal minor (determinant of a sub-block) of size $j \times j$ of the matrix $(1/2)(Q_{RR} - Q_{AA} + Q_{RA} - Q_{AR})_{bb}$

• Spinful classes: Determinants \longrightarrow Pfaffians of $2j \times 2j$ sub-blocks

These are pure scaling operators. Abelian fusion rules: $\mathcal{P}_{\lambda}(Q)\mathcal{P}_{\lambda'}(Q) = \mathcal{P}_{\lambda+\lambda'}(Q)$ $P_{\lambda}[\psi]P_{\lambda'}[\psi] = P_{\lambda+\lambda'}[\psi]$

A proof goes via Iwasawa decomposition G = NAK. $\mathcal{P}_{(q_1,...,q_n)}(Q)$ are N-invariant spherical functions on G/Kand have a form of "plane waves" on A.

Iwasawa decomposition and spherical functions

 σ -model space: G/K K — maximal compact subgroup • Iwasawa decomposition: G = NAK g = nak A — maximal abelian in G/K N — nilpotent (\longleftrightarrow triangular matrices with 1 on the diagonal) Generalization of Gram-Schmidt (QR) decomposition: matrix = triangular \times unitary

- Eigenfunctions of all G-invariant (Casimir) operators (in particular, RG transformation) are spherical functions on G/K.
- N-invariant spherical functions on G/K are "plane waves"

$$arphi_{(q_1,...,q_n)} = \expig(-2\sum_{j=1}^n q_j x_jig)$$

 x_1, \ldots, x_n — natural coordinates on A.

• $\phi_{(q_1,...,q_n)}$ is exactly $\mathcal{P}_{(q_1,...,q_n)}(Q)$ introduced above

Weyl symmetries of scaling exponents

Weyl group acts in the space of weights λ (dual to Lie algebra of A) \longrightarrow invariance of eigenvalues of any G invariant operator with respect to

(i) reflections:
$$q_j \rightarrow -c_j - q_j$$

(ii) permutations: $q_i \rightarrow q_j + \frac{c_j - c_i}{2}; \quad q_j \rightarrow q_i + \frac{c_i - c_j}{2}$

$$\begin{array}{lll} c_{j}=1-2j, \ {\rm class} \ {\rm A} & c_{j}=-2j, & {\rm class} \ {\rm CI} \\ c_{j}=-j, & {\rm class} \ {\rm AI} & c_{j}=2-2j, & {\rm class} \ {\rm DIII} \\ c_{j}=3-4j, \ {\rm class} \ {\rm AII} & c_{j}=1-2j, & {\rm class} \ {\rm DIII} \\ c_{j}=1-4j, \ {\rm class} \ {\rm C} & c_{j}=1/2-j, & {\rm class} \ {\rm BDI} \\ c_{j}=1-j, \ {\rm class} \ {\rm D} & c_{j}=2-4j, & {\rm class} \ {\rm BDI} \\ \end{array}$$

 \rightarrow symmetries of eigenvalues of RG, i.e. scaling exponents x_{λ} \rightarrow earlier found symmetry $x_q = x_{1-q}$ for Wigner-Dyson classes and many more symmetry relations for all classes

Criticality in 2D

- Broken spin-rotation invariance: Classes AII, D, DIII Metallic phase (weak antilocalization) and metal-insulator transition
- Sublattice symmetry: Chiral classes AIII, BDI, CII Critical-metal phase and metal-insulator transition
- Broken time-reversal invariance: Topological θ term and quantum Hall criticality class A — Quantum Hall effect / transition class C — Spin Quantum Hall effect / transition class D — Thermal Quantum Hall effect / transition
- Topologically protected criticality on surfaces of topological insulators and superconductors or in models of disordered Dirac fermions
 classes AII, CII — Z₂ topological term
 classes AIII, CI, DIII — Wess-Zumino term

Generalized multifractality — "fingerprint of a critical point"

Criticality in 2D

- Broken spin-rotation invariance: Classes AII, D, DIII Metallic phase (weak antilocalization) and metal-insulator transition
- Sublattice symmetry: Chiral classes AIII, BDI, CII Critical-metal phase and metal-insulator transition
- Broken time-reversal invariance: Topological θ term and quantum Hall criticality class A — Quantum Hall effect / transition
 class C — Spin Quantum Hall effect / transition
 class D — Thermal Quantum Hall effect / transition
- Topologically protected criticality on surfaces of topological insulators and superconductors or in models of disordered Dirac fermions
 classes AII, CII — Z₂ topological term
 classes AIII, CI, DIII — Wess-Zumino term

Generalized multifractality — "fingerprint of a critical point"

Generalized multifractality and conformal invariance in 2D

• Usually (but not always) criticality implies conformal invariance \rightarrow conformal field theory (CFT). The group of conformal transformations is particularly large in 2D (infinite-dimensional Virasoro algebra).

• Most of generalized multifractality correlation functions depend on system size L in a power-law way, at variance with CFT. Only those satisfying "neutrality" condition $\sum_i \lambda_i = (-c_1, \ldots, -c_n) \equiv -\rho_b$ have a chance to be described by CFT — but this is not guaranteed.

• We show that, if such correlation functions satisfy 2D conformal invariance, x_{λ} is a quadratic function of q_j — "generalized parabolicity". With Weyl symmetry \longrightarrow single-parameter "generalized parabolicity"

$$x^{ ext{para}}_{\lambda}\equiv x^{ ext{para}}_{(q_1,q_2,...)}=-b\sum_i q_i(q_i+c_i)\equiv -b\lambda\cdot (\lambda+
ho_b)\equiv -bz_\lambda$$

 z_{λ} - eigenvalues of the Laplace-Beltrami operator on the σ -model target space. Generalized parabolicity — stringent test of conformal invariance! In particular, violation of generalized parabolicity excludes Wess-Zumino-Novikov-Witten models as candidates for critical theory. More about this, including extension to higher d: talk by Ilya Gruzberg

Class AII. Metallic phase: Pure-scaling observables

dashed lines: generalized parabolicity $x_{\lambda}^{\mathrm{para}} = -bz_{\lambda}$ with b = 0.0273

Perfect confirmation of σ -model predictions:

- pure-scaling observables
- generalized parabolicity (exact in one-loop order)

Class AII. Metallic phase

Red dashed lines: generalized parabolicity $x_{\lambda}^{\text{para}} = -bz_{\lambda}$ with b = 0.0273. Generalized parabolicity holds with an excellent accuracy, in consistency with analytical (σ -model) predictions. It is exact in one-loop order, and there is no two-loop and three-loop corrections in class AII.

Class AII. Scaling exponents x_{λ}

	rep. λ	$x_\lambda^{ ext{MIT}}$	$x_\lambda^{ m MIT}/b$	$x_\lambda^{ m metal}$	$x_\lambda^{ m metal}/b$	$x^{ ext{para}}_{\lambda}$
q=2	$(2) \\ (1,1)$	-0.361 ± 0.001 0.489 ± 0.001	$-2.08 \pm 0.01 \\ 2.83 \pm 0.01$	-0.0551 ± 0.0001 0.1095 ± 0.0001	-2.017 ± 0.005 4.012 ± 0.005	-2b $4b$
q = 3	(3)	-1.14 ± 0.01	-6.57 ± 0.06	-0.1659 ± 0.0004	-6.08 ± 0.02	-6b
	$(2,1) \ (1,1,1)$	$0.225 \pm 0.001 \\ 1.333 \pm 0.001$	$\begin{array}{c} 1.30\pm0.01\\ 7.70\pm0.01\end{array}$	$0.0547 \pm 0.0002 \\ 0.3278 \pm 0.0003$	$2.04 \pm 0.01 \\ 12.01 \pm 0.01$	2b 12b
q = 4	(4)	-2.27 ± 0.05	-13.13 ± 0.29	-0.334 ± 0.001	-12.21 ± 0.04	-12b
	$(3,1) \\ (2,2)$	$-0.36 \pm 0.01 \ 0.493 \pm 0.005$	$-2.06 \pm 0.06 \ 2.85 \pm 0.03$	-0.0557 ± 0.0005 0.1095 ± 0.0005	$-2.04 \pm 0.02 \ 4.01 \pm 0.02$	$\begin{array}{ c } -2b \\ 4b \end{array}$
	$(2,1,1) \ (1,1,1,1)$	$egin{array}{c} 1.111 \pm 0.003 \\ 2.515 \pm 0.002 \end{array}$	$6.42 \pm 0.02 \ 14.54 \pm 0.01$	$0.2728 \pm 0.0005 \\ 0.6545 \pm 0.0003$	$\begin{array}{c} 9.99 \pm 0.02 \\ 23.97 \pm 0.01 \end{array}$	10b 24b
q = 5	(5)	-3.52 ± 0.09	-20.37 ± 0.17	-0.559 ± 0.003	-20.48 ± 0.52	-20b
	(4,1) (3,2)	$-1.35 \pm 0.07 \ 0.02 \pm 0.02$	$-7.82 \pm 0.40 \ 0.08 \pm 0.12$	$-0.223 \pm 0.001 \\ -0.0006 \pm 0.0009$	$-8.16 \pm 0.04 \ 0.02 \pm 0.03$	-8b 0
	$(3,\!1,\!1) \ (2,\!2,\!1)$	$0.64 \pm 0.01 \\ 1.333 \pm 0.005$	$3.67 \pm 0.06 \ 7.70 \pm 0.03$	$0.1623 \pm 0.0008 \\ 0.327 \pm 0.0008$	$5.95 \pm 0.03 \ 11.97 \pm 0.03$	6b 12b
	$(2,1,1,1) \\ (1,1,1,1,1)$	$2.316 \pm 0.004 \ 4.031 \pm 0.004$	$egin{array}{r} 13.39 \pm 0.02 \ 23.30 \pm 0.02 \end{array}$	$0.5997 \pm 0.0005 \\ 1.0895 \pm 0.0004$	$21.99 \pm 0.02 \ 39.91 \pm 0.02$	22b $40b$

Class AII. Anderson transition: Pure-scaling observables

Perfect confirmation of σ -model predictions:

- pure-scaling observables
- Weyl symmetries (see next two slides)

generalized parabolicity strongly violated (see also next slide)

Class AII. Anderson-transition critical point

• Weyl symmetry holds nicely (see also the table on the next slide)

• Generalized parabolicity (red lines) strongly violated

 \rightarrow violation of conformal invariance

Class AII. Scaling exponents x_{λ}

	rep. λ	$x_\lambda^{ m MIT}$	$x_\lambda^{ m MIT}/b$	$x_\lambda^{ m metal}$	$x_\lambda^{ m metal}/b$	$x_\lambda^{ ext{para}}$
q=2	$(2) \\ (1,1)$	$\frac{-0.361 \pm 0.001}{0.489 \pm 0.001}$	$-2.08 \pm 0.01 \\ 2.83 \pm 0.01$	-0.0551 ± 0.0001 0.1095 ± 0.0001	-2.017 ± 0.005 4.012 ± 0.005	-2b 4b
q=3	(3) (2,1)	$-1.14 \pm 0.01 \\ 0.225 \pm 0.001$	$-6.57 \pm 0.06 \\ 1.30 \pm 0.01$	-0.1659 ± 0.0004 0.0547 ± 0.0002	$-6.08 \pm 0.02 \\ 2.04 \pm 0.01$	-6b 2b
	(1,1,1)	$\boxed{1.333\pm0.001}$	7.70 ± 0.01	0.3278 ± 0.0003	12.01 ± 0.01	12b
q = 4	$(4) \\ (3,1)$	$\begin{array}{c} -2.27 \pm 0.05 \\ \hline -0.36 \pm 0.01 \end{array}$	$-13.13 \pm 0.29 \ -2.06 \pm 0.06$	-0.334 ± 0.001 -0.0557 ± 0.0005	$-12.21 \pm 0.04 \ -2.04 \pm 0.02$	$\begin{vmatrix} -12b \\ -2b \end{vmatrix}$
	(2,2)	0.493 ± 0.005	2.85 ± 0.03	0.1095 ± 0.0005	4.01 ± 0.02	4b
	$(2,1,1) \\ (1,1,1,1)$	1.111 ± 0.003 2.515 ± 0.002	6.42 ± 0.02 14.54 ± 0.01	0.2728 ± 0.0005 0.6545 ± 0.0003	$9.99 \pm 0.02 \\23.97 \pm 0.01$	10b 24b
q = 5	(5)	-3.52 ± 0.09	-20.37 ± 0.17	-0.559 ± 0.003	-20.48 ± 0.52	-20b
	(4,1) (3.2)	-1.35 ± 0.07 0.02 ± 0.02	-7.82 ± 0.40 0.08 ± 0.12	-0.223 ± 0.001 -0.0006 ± 0.0009	-8.16 ± 0.04 0.02 ± 0.03	-8b
	(3,2) (3,1,1)	$\begin{array}{c} 0.02 \pm 0.02 \\ 0.64 \pm 0.01 \end{array}$	$\begin{array}{c} 0.03 \pm 0.12 \\ 3.67 \pm 0.06 \end{array}$	0.1623 ± 0.0008	5.95 ± 0.03	6 <i>b</i>
	(2,2,1)	1.333 ± 0.005	7.70 ± 0.03	0.327 ± 0.0008	11.97 ± 0.03	12b
	$(2,1,1,1) \\ (1,1,1,1,1)$	$2.316 \pm 0.004 \\ 4.031 \pm 0.004$	13.39 ± 0.02 23.30 ± 0.02	0.5997 ± 0.0005 1.0895 ± 0.0004	21.99 ± 0.02 39.91 ± 0.02	220 40b

Class C. SQH transition: Pure-scaling observables

excellent agreement with analytical results from percolation mapping (dashed lines)

Perfect confirmation of σ -model predictions:

- pure-scaling observables
- Weyl symmetries

generalized parabolicity strongly violated

(see also next three slides)

SQH transition and classical percolation

Classical percolation: Probability that n hull segments come close at two points separated by a distance r:

Class C. SQH transition.

• Excellent agreement of numerical values with analytical results (from mapping to percolation; green symbols)

- Weyl symmetry holds nicely
- Generalized parabolicity (red lines) strongly violated

\rightarrow violation of conformal invariance

SQH transition (class C). Scaling exponents x_{λ}

	λ	$x_\lambda^{ m perc}$	$x_\lambda^{ m num}$	$\mid x_{\lambda}^{ ext{para}} angle$
q = 1	(1)	$x_1^{ m h} = 1/4 = 0.25$		1/4
q=2	(2) (1.1)	$x_1^{ m h} = 1/4 = 0.25 \ x_2^{ m h} = 5/4 = 1.25$	$0.249 \pm 0.001 \\ 1.251 \pm 0.001$	1/4 1
q = 3	(3)	0	0.004 ± 0.004	0
	$(2,1) \ (1^3)$	$x_2^{ m h} = 5/4 = 1.25 \ x_3^{ m h} = 35/12 \simeq 2.917$	1.249 ± 0.002 2.915 ± 0.002	1 9/4
q = 4	(4) (3.1)		-0.49 ± 0.02 0.985 ± 0.007	-1/2 3/4
	(2,2) (2,1,1)	$x_{ m c}^{ m h}=35/12\sim 2.917$	1.865 ± 0.006 2.911 ± 0.005	3/2 9/4
	(1^4)	$x_4^{ m h} = 21/4 = 5.25$	5.242 ± 0.004	4
q = 5	(5)		-1.19 ± 0.06	-5/4
	(4,1) (3,2)		0.48 ± 0.03 1.59 ± 0.02	$\begin{array}{c} 1/4 \\ 5/4 \end{array}$
	$(3,1,1) \ (2,2,1)$		$2.64\pm0.02\ 3.50\pm0.02$	$\begin{array}{ c c }\hline 2\\ 11/4\end{array}$
	$(2,1^3) \ (1^5)$	$x_4^{ m h}=21/4=5.25 \ x_5^{ m h}=33/4=8.25$	$5.23\pm0.01 \ 8.16\pm0.01$	$\frac{4}{25/4}$

• Excellent agreement of numerical values x_{λ}^{num} with analytical results $x_{\lambda}^{\text{perc}}$ (from mapping to percolation)

• Weyl symmetry holds nicely

• Generalized parabolicity $(x_{\lambda}^{\text{para}}, \text{ last column})$ strongly violated

 \longrightarrow violation of conformal invariance

Extensions to other 2D critical points / symmetry classes

- quantum Hall transition (class A)
- metallic phases and MIT in classes D and DIII Peculiarity: two disjoint components of the σ -model manifold \longrightarrow domain walls \longrightarrow violation of Weyl symmetry at the MIT
- chiral classes AIII, BDI, CII (models with sublattice symmetry): critical-metal phases and metal-insulator transitions Peculiarities:

(i) Observables / exponents labeled by a pair of multi-indices: $\lambda = (q_1, \ldots, q_n)$ and $\overline{\lambda} = (\overline{q}_1, \ldots, \overline{q}_{\overline{n}})$ corresponding to two sublattices (ii) peculiar Weyl group (only permutations) \longrightarrow affects Weyl symmetries $\lambda = \lambda'$ observables: $x_{\lambda,\lambda} = x_{w(\lambda),w(\lambda)}$ $w \in$ conventional Weyl group

• (work in progress) topologically protected critical points at surfaces of topological superconductors or in models of Dirac fermions (classes CI, DIII, AIII)

$\longrightarrow \ {\rm WZNW} \ {\rm theories} \ \longrightarrow \ {\rm generalized} \ {\rm parabolicity}, \\ {\rm remains} \ {\rm to} \ {\rm be} \ {\rm verified} \ {\rm numerically}$

Surface generalized multifractality

Analytics: Sigma-model analysis extended to observables near the boundary. Construction of observable and Weyl symmetries keep their form.

Class-AII Anderson transition.

Observables – OK, Weyl symmetries – OK \rightarrow confirmation of validity of sigma-model approach also at boundary

strong violation of generalized parabolicity, corroborates corresponding bulk fundings

 \longrightarrow violation of conformal invariance

Surface generalized multifractality: SQH transition (class C)

Observables – OK, Weyl symmetries – OK

 \rightarrow confirmation of validity of sigma-model approach also at boundary

strong violation of generalized parabolicity, corroborates corresponding bulk fundings \rightarrow violation of conformal invariance

IQH transition (class A): similar results

Surface generalized multifractality: SQH transition (class C) Analytical results from percolation mapping

Mapping \longrightarrow some exponents $x_{\lambda}^{(s)}$ can be expressed in terms of percolation *n*-hull boundary exponents, which were calculated by Saleur, Bauer, 1989

$$\longrightarrow x^{(s)}_{(1^n)}=rac{n(2n-1)}{3}, \hspace{1em} n=1,2,3,\ldots \hspace{1em} ext{Weyl symmetry} \hspace{1em} \longrightarrow \hspace{1em} x^{(s)}_{(2,1^{n-1})}=x^{(s)}_{(1^n)}$$

λ	$ au_{\lambda}^{(s)}$	$ au_{\lambda, ext{perc}}^{(s)}$	$\Delta^{(s)}_{\lambda}$	$x_{\lambda}^{(s)}$	$x^{(s)}_{\lambda, ext{perc}}$
(1)	1.0815	13/12	-0.0018	0.3315 ± 0.0022	1/3
(2)	2.838	17/6	-0.329	0.338 ± 0.009	1/3
(1,1)	4.487	4.5	1.320	1.987 ± 0.007	2
(3)	4.36	4.25	-0.89	0.11 ± 0.05	0
(2,1)	6.27	6.25	1.02	2.02 ± 0.03	2
(1,1,1)	9.15	9.25	3.90	4.90 ± 0.04	5
(4)	5.74	-	-1.59	-0.26 ± 0.18	-
(3,1)	7.86	-	0.52	1.86 ± 0.09	-
(2,2)	8.92	-	1.58	2.92 ± 0.05	-
(2,1,1)	10.83	11	3.49	4.83 ± 0.12	5
$\fbox{(1,1,1,1)}$	14.41	46/3	7.07	8.41 ± 0.06	28/3

Excellent agreement between numerical and analytical values of exponents!

Logarithmic conformal mapping: 2D to quasi-1D

$$w=rac{M}{\pi}\ln z, \qquad z=\exp\left(rac{\pi}{M}w
ight)$$

Assume invariance with respect to this mapping

$$egin{array}{lll} \longrightarrow & \left. \pi rac{dx^{(s)}_{(q^n)}}{dq}
ight|_{q=0} = 2M\sum_{i=1}^n \mathcal{L}_i \qquad \mathrm{n}=1,\!2,\!3,\ldots$$

 \mathcal{L}_i – Lyapunov exponents

Numerical data are in very good agreement with these relations

	$\left. \left. \pi rac{dx^{(s)}_{(q^n)}}{dq} ight _{q=0} ight.$	$2M\sum_{i=1}^n \mathcal{L}_i$
n = 1	1.337 ± 0.020	1.331 ± 0.005
n=2	5.42 ± 0.03	5.39 ± 0.02
n=3	12.12 ± 0.05	12.05 ± 0.06
n = 4	21.18 ± 0.07	21.25 ± 0.14

(data for class-AII MIT presented; similar results for SQH and IQH transitions)

invariance with respect to exponential map although full conformal invariance is violated

Summary

- Generalized multifractality of wave functions at Anderson transitions
- Pure-scaling composite operators in the σ -model formalism
- Construction of pure-scaling eigenfunction observables for all symmetry classes and its numerical verification
- Symmetries of scaling exponents: Weyl-group invariance
- Analytical evaluation of a certain subset of generalized-multifractality exponents for SQH transition via mapping to percolation
- Numerical evaluation of generalized-multifractality exponents for 2D critical points of various symmetry classes
- Excellent agreement with predictions of σ models on pure-scaling observables, Weyl symmetries, generalized parabolicity in the metallic phase \longrightarrow confirmation of σ models as field theories of Anderson localization
- Violation of generalized parabolicity—and thus of conformal invariance at SQH transition and several other 2D Anderson-localization critical points. Excludes Wess-Zumino-Novikov-Witten models as critical theories.
- Surface generalized multiftactality.
- Invariance with respect to $2D \leftrightarrow quasi-1D$ logarithmic mapping

Outlook : models with interaction; experiment; ...