Helical crystals: band structure, multicritical behavior and topological defects

<u>R.A. Niyazov¹, D.N. Aristov^{1,2}, V.Yu. Kachorovskii¹</u>

¹loffe institute ²NRC KI – PNPI

OOOOOOOOOOOOOOOOOOOOOOOO

Helical states

Motivation

- Exist at the edge of 2D topological insulators
- Electrons with different spins opposite propagate in directions
- Protected time reversal by inversion

10⁷

10⁶

10⁴

R_{14,23} / Ω

1. Maier, H.; Ziegler, J.; Fischer, R.; Kozlov, D.; Kvon, Z. D.; Mikhailov, N.; Dvoretsky, resistance resonances in a single surface

There are special values of the magnetic flux $\phi = 0$; 1/2, at which Dirac points appear

difference is added to

 α – tunneling between rings $\gamma = \pi/2$ symmetrical case

transfer matrix passing the entire ring

Electron interaction

It is known that the interaction renormalizes "the junction" between helical states. And what about a set of junctions? Renormalization - taking into account virtual processes $\lambda_{\rm F} < l < l_{\rm T}$ At high temperature $T \gg \frac{v_{\rm F}}{L} \Leftrightarrow l_{\rm T} \ll L$: junctions are renormalized separately At low temperature $l_T \gg L$: on scale l < L junctions are renormalized separately, further $L < l < l_{T}$ renormalization of the effectively homogeneous Luttinger fluid.

Result: renormalization of parameters α and β

Attractive fixed points: L1: Independent rings

Dispersion manipulation: changing magnetic field and gate voltage

Localized states

Dispersion near Dirac points

Change sign of $\delta \phi$ – gap reopening

Localized states of the Volkov-Pankratov type located inside the gap arise.

- splitting can be manipulated by gates and magnetic flux
- gap controlled by magnetic flux

FP2: Independent shoulders **FP3**: Spin-flip channels **FP4**: Multicritical point Symmetric t = f = r = $1/\sqrt{3}$

The work was supported by the Russian Science Foundation (Grant No. 20-12-00147)

More details and references: <u>R. A. N., D. N. Aristov, V. Yu. Kachorovskii, Tunable helical crystals, arXiv:2305.08242</u>