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Inhomogeneous 1D superconducting wires
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e T heoretical description based on the Usadel equation

(D/2)d?8/dz? + iEsin® + A(r)cosd =0

v(E,r) = 1vgRecosl(E,r) —7m/2 < Ref < /2

e In 1D wires, Usadel equation describes dynamics of a driven pendulum
with complex frequency — instability — problems with negative DOS
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Whitney's problem

Stochastic Whitney's problem
e \Weak driving
e Field-theoretcal appoach

e Statistics of the never-falling trajectory

Lyapunov exponent

Physical interpretation



Inverted pendulum under horizontal driving
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Courant & Robbins (1941)

6 = w?sin® + f(t) cosb
—m/2 <0 < m/2

H. Whitney’s problem

Is it possible to place
the rod in such a position that, if it is released at the instant when the
train starts and allowed to move solely under the influence of gravity
and the motion of the train, it will not fall to the floor during the entire
journey from A to B?

It might seem quite unlikely that for any given schedule of motion
the interplay of gravity and reaction forces will always permit such
a maintenance of balance under the single condition that the initial posi-
tion of the rod is suitably ehosen. Yet we state that such a position
always exists.



Whitney’s problem & Arnold
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Courant & Robbins (1941) Arnold (2002)
Proof based on continuity Continuity to be proved

Paradoxical as this assertion might seem at first sight, it can be proved
easily once one concentrates on its essentially topological character.
No detailed knowledge of the laws of dynamics is needed; only the
following simple assumption of a physical nature need be granted: The
motion of the rod depends conlinuously on its inilial posttion.



Whitney’s problem in historical perspective

e R. Courant and H. Robbins (1941)
Continuity arguments

e A. Broman (1958)
Sets of initial conditions leading to first crossing /2 or —7/2 are open

e T. Poston (1976)
Claims a non-falling trajectory may not exist

e V. Arnold (2002)
Existence still to be proven

e I. Polekhin (2014)
Proof using Wazewski topological principle

e S. Bolotin and V. Kozlov (2015)
Other topological arguments

e O. Zubelevich (2015)
Alternative approach 4+ review

e A. Shen (2019) Rod in a train: a mechanical problem of H. Whitney,
or Much Ado About Nothing, arXiv:1907.01598



Kapitza pendulum

e Vertical driving e Horizontal driving

¢ = —w?sinp 4+ f(t)sing ¢ = —w?sinp 4+ f(t) cosp

periodic driving
f(t) oc acos~t
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Warm up: numerics

6 = w?sin® + f(t) cosb
—m/2 <0< m/2

Vo = 8.5000000
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Warm up: numerics

6 = w?sin® + f(t) cosb
—m/2 <0< m/2

Vo = 8.7401543




Non-falling trajectory

6 = w?sin® + f(t) cosb
—m/2 <0< m/2
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e J a unique non-falling trajectory with 6(0) =61 to 6(T) = 6, for all T.
e At T' — oo this non-falling trajectory turns to a unique never-falling trajectory

e Exponentially unstable attractor
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e Statistics of the never-falling trajectory

Lyapunov exponent

Physical interpretation



Problem formulation

§ = w?sin® + f(t)cosd
—m/2 <0< m/2

(FO D)) =2ad(t —1")

Describe statistics of the non-falling trajectory
and calculate the distribution function P(6,0)

The only dimensionless parameter:




Weak-driving limit

o If /w3 < 1 then the pendulum equation can be linearized (0 <« 1):
0 = w20+ f(t)

e Linear equation with additive noise

e Bounded solution is uniqgue and can be written explicitly:

— 00

0(t) = /Oo Gt —t)fit)dt f(t) /\/\/\ M

G(1) = — - exp(~wl) V\/\' ARV

past future
e Probability distribution function: >

2 3
P(0,6) = £~ exp (_w_ez _ 892)

TX « «

w3 w3
P(0) = /] =—exp (——02)
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Outline

e Stochastic Whitney's problem

e Field-theoretcal appoach



Field theory

e Classical nonlinear dynamic equation with randomness

Martin, Siggia & Rose (1973)
Halperin, Hohenberg & Ma (1974)
Parisi & Sourlas (1979)
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Parisi & Sourlas approach

6= F(0,t) F(0,t) = w?sin6 + f(t) cosb
e Partition function (number of solutions)
2= [ Do(t) 5(6(8) b (0)

Z = /DH(t) 5(—0 + F(6)) |det (—02 + F'(8))]

e Removing the absolute value due to uniquness of the NFT s

Z = /De DX DX Dy exp [/ dt{z‘/\(—é + F(6)) + x(—07 + F’(Q))x}]

Kinetic energy: i\0 + Yx

e Disorder averaging generates a local action and couples bosons to fermions

() = 2as(t —t)



Transfer-matrix Hamiltonian
Efetov & Larkin (1983)

e From a 1D field theory to an effective quantum mechanics:

OV = —HW W =W(,A\xX,x) =W, + >0, )xx
e Fourier transform w.r.t. the decoupler field A (p corresponds to 0;0):

W, \) = / U (6, p)ei™ (dp)

e [ wo-component evolution:
0 (W \Uj L -1
ale)=-n(e)  m=(k7)
Here L is the Fokker-Planck operator for the Kramers problem:

Vo = —w? cosf — asin 26 9.



BRST symmetry

Z = /De DX Dy Dy exp U dt{z‘/\(—é + F(0)) + x(—07 + F’(H))x}]

e The Lagrangian can be written as
L ="D[x(—=0+ F())]
where D is a nilponent BRST operator
D= iIAO; — XOp
e BRST symmetry of £ translates to that of W:
W =W+ dxx =D (X¢)
e In terms of the superpotential o

®(0,p) = 0pp(0,p)



Superpotential: Fokker-Planch evolution

e Schrodinger equation for the superpotential

0 :
awg)m = — (pOp + w”sin0 9, — acos® 0 07) ¥(6, p)

e Mathematically equivalent to the Fokker-Planch equation for PDF (6, p).
in a usual setup. We also see that p = 9,0.

e Joint probability distribution function:

W (0,p) = —0(0,p)
Cl)(@,p) — pw(97p)

P(0,p) = W(0,p)®(0, —p)+W (0, —p) (0, p) = {4(0,p),¥(0, —p) }

0,p

157

00f

-1.0F

-1.5

1.0F

05Ff

-0.5F




Outline

e Stochastic Whitney's problem

e Statistics of the never-falling trajectory



Never-falling trajectory & zero mode

e Schrodinger equation for the superpotential
8 2 i 2 2
a@b(@,p) = — (p@g + wsinf 9, — a cos Qﬁp) (6, p)

e In the limit T' — oo, only the zero mode survives:

(pOs + w?sin 08, — acos® 0 85) (0, p) =0

like in the theory of 1D Anderson localization
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Boundary conditions

P(Q,p) — {¢(9,p),¢(9, _p)}e,p
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Normalization condition: @D(@,p)‘ =1

p=—00



Boundary conditions

P(Q,p) — {w(eap)7¢(97 _p)}H,p

P A
Y =3 =7
S o1 B
v =7 Y=

Our BC are different from
the usual BC for the FPE:

e absorbing wall

e reflecting wall

They resemble BC

for an absorbing wall,
which however acts

as a source of incoming
particles with

a p-independent flux



Equation to solve

(pOs + w?sin0 8, — acos®085) (6, p) =0




1) No driving

e In the absence of driving (a = 0)

(pBy + w?sin 6 8,) ¥(6,p) =0

e [ hat can be easily solved:

W(0,p) = %sign(p — 2wsinf/2)

e Probability distribution function:

P(0,0) = §(0)8(0)

afwd =

-0.0




2) Weak-driving limit

o If a/w® <« 1 then equation for ¥
can be linearized (6 <« 1):

(pBs + w60, — ad?) ¥(6,p) =0

e [ hat can also be solved:

600 = Fert |\ [ 20— 0)

e Probability distribution function:

« (87

2 3
P(8,6) = < exp (_w_gz _ fgz)

as expected

a/w3 = 0.1




3) Strong-driving limit

o If a/w3 > 1 we neglect the w-term
(no gravitation limit):

(pBs — cvcos®992) ¥(60,p) =0

e In terms of new variables

4 (¢ 2 in2
T:—/ cos? gy = 22T Sn29
0

7T T

g = (4/ma)3p

we have a pretty simple equation:

Orp = q_18§¢
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ct
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3) Strong-driving limit

e Equation 9,1 = ¢ '97¢ is solved by the muitiplicative Airy transform:

(7, q) = / " e() Ai(ug) exp(37)

—O0
e The coefficients ¢(u) to be determined from the boundary conditions

SAT(0) [ du (3/2)%7 12| Ai(pq) exp(p®T)

Ai(0) J_ 1
~ exp(—|ul>)

Y(1,q) =




3) Strong-driving limit

o PDF P(0,p) [s = (2/31a)/3p/(1 — 72)1/3]:

-
1—72 ™

16cos26 [ AI'(0)\? Ai(s2) Ai'(s?) _ 20 +sin2¢
(7)

P(0,p) = T 31/3,4/341/3

e P(0) distribution function:

_r(s/6) |
PO = ramyraa -2y
P(0) = P(T)fl—g
T



Comparison to direct Monte-Carlo simulation

a/ws = 0.1 @l =3
: 0.5
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Lyapunov exponent

e Schrodinger equation for the superpotential
%w(e,p) = — (p89 + w?sin# 9, — a cos? 985) W(6,p)

e While one-time statistics of the never-falling trajectory is expressed
by the zero mode, different-time statistics or one-time statistics
at finite intervals are determined by the spectrum of the FP operator.

oIn{6(0)o(t
e Lyapunov exponent: A= —Iim (0(0)0(1))
t—o0 Ot
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e Lyapunov exponent:

20—

Lyapunov exponent

N~ i 2IN(0(0)6(H))

- 3
lim 51 = wg(a/w”)
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Physical meaning of SUSY objects

e SUSY wave function
W =W + dyy W(0,p) = —0p(0,p) D(0,p) = (0, p)

e Velocity profile p(6,1t)

e FP equation for ¢ = (© (p(0,t) — p))

0 :
a@b(ejp) = — (pdy + w’sin0 8, — acos 0 97) ¥ (6, p)

e In terms of the profile p(6,t), W and & give
conditional probability to have p at a given 6
and vise versa.

W (0,p) = P (pl0,t)
@ (60,p) = P (6p,1)




Outlook

e 1D inhomogeneous superconductors
Usadel equation as pendulum equation with complex w
hope for exact determination of the DOS peak smearing

e Sinai-Khanin minimizers
E, Khanin, Mazel & Sinai (2000), Khanin et al. (2000—)
Trajectory that provides true minimum for the action, not a saddle point

¢ Randomly forced Burgers equation (1D pressureless turbulence)
Polyakov (1995), Gurarie & Migdal (1996), ...
Equation for characteristics is in the class of the driven pendulum equation
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Summary

Statistical properties of a unique non-falling trajectory have been analyzed
Supersymmetric Parisi-Sourlas approach + transfer-matrix method

The PDF P(Q,é) is obtained as a ‘“square” of an auxiliary superpotential,
which obeys the Fokker-Planch equation with a proper BCs

Never-falling trajectoty — zero mode
Finite-time correlations = excited states

Can be derived without supersymmetry

N. A. Stepanov and M. A. Skvortsov, SciPost Phys. 13, 021 (2022)
N. A. Stepanov and M. A. Skvortsov, JETP Lett. 112, 376 (2020)



