
Nonlinear dynamics of slipping flows

E.A. Kuznetsov (1,2,3) and E.A. Mikhailov(1,3,4)

(1)- P.N. Lebedev Physical Institute, Moscow, Russia
(2)- L.D. Landau Institute for Theoretical Physics, Chernogolovka, Moscow region, Russia

(3)- Skoltech, Skolkovo, Moscow region, Russia
(4) - Physics Dept, Moscow State University

Landau Week: Frontiers in Theoretical Physics, Yerevan, June 21-30, 2023

This work was performed under support

by the Russian Science Foundation (grant no. 19-72-30028).

Nonlinear dynamics of slipping flows – p. 1



OUTLINE

Introduction & Motivation: Collapse and the
Kolmogorov-Obukhov theory

Basic equations and mixed Lagrangian-Eulerian
description

Solution to the inviscid Prandtl equation

Boundary conditions and connection with the Hopf
equation

Constant pressure gradient

Growth of the 2D Euler velocity and vorticity gradients on
the boundary

Application to the 3D inviscid Prandtl equation

Conclusion Nonlinear dynamics of slipping flows – p. 2



Collapse and the Kolmogorov-Obukhov theory

According to the Kolmogorov-Obukhov theory (1941)
velocity fluctuations at spatial scales l from the inertial
range obey the power-law 〈|δv|〉 ∝ ε1/3l1/3, where ε is the
mean energy flux from large to small scales. This formula
is easily obtained from the dimensional analysis.

Similarly, fluctuations for the vorticity field ω = ∇× v

diverge at small scales as 〈|δω|〉 ∝ ε1/3l−2/3, while the
time of energy transfer from the energy-contained scale
lE to the viscous ones is finite and estimated as
T ∼ l

2/3
E ε−1/3.

These two relations allow to link the Kolmogorov
spectrum formation with the blowup in the vorticity field
(collapse).
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Introduction & Motivation

The question whether finite time singularities develop in
inertial scales (in fact, in ideal fluids) is still open question,
in spite of certain progress in both numerical and
analytical studies.

Up to now, the question about blow-up existence for ideal
fluids within the 3D Euler remains controversial. In our
numerics (Agafontsev, Kuznetsov, Mailybaev 2015, 2017,
2019, 2022) for periodical boxes we have observed
formation of high-vorticity structures of the pancake type
with exponential growth of ω but without any tendency to
blowup. Such increasing is connected with the vorticity
compressibility. The latter follows from the vorticity ω
frozen-in-fluids.
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Introduction & Motivation

However, for flows of ideal fluids in the presence of rigid
boundaries recent findings, both analytical and numerical,
demonstrate blow-up behavior. For two-dimensional
planar flows in the region with non-smooth boundaries
Kiselev and Zlatos (2015) proved blow-up existence.

In 2014, 2015 Luo and Hou in numerical experiments for
axi-symmetrical flows with swirl inside the cylinder of
constant radius observed appearance of collapse just on
the boundary. It was a challenge why boundaries play so
important role in formation of singularities.

In 2019 Elgindi and Jeong proved the existence of
solutions to the axi-symmetric 3D Euler equations outside
the cylinder (1 + ǫ|z|)2 ≤ x2 + y2 with singularity on the
wall. Nonlinear dynamics of slipping flows – p. 5



Introduction & Motivation

The latter result correlates with studies of Kiselev and
Zlatos (2015) for two-dimensional Euler flow inside the
region with not-smooth boundaries.

In 1985 E and Engquist reported some rigorous results
about blow-up existence for both inviscid and viscous
Prandtl equation for some initial data when the velocity
component parallel to a wall vanishes at the whole
vertical line. For such initial conditions these authors
found sufficient condition for blow-up in the viscous case.

It is worth noting that before, in 1980, the blowup
appearance in the Prandtl equation was observed in the
numerical simulations by Van Dommelen and Shen.
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Introduction & Motivation

In 2003 Hong and Hunter investigated this problem for
both viscous and inviscid Prandtl equation for zeroth
pressure gradient. In particular, in the inviscid case they
noticed that singularity can form on the wall.

In 2014 for smooth boundary conditions in the case of 2D
Euler for flows inside a disk Kiselev and Šverák
constructed an initial data for which the gradient of
vorticity exhibits double exponential growth in time with
maximum value on the boundary. Simultaneously the
velocity gradient grows on the boundary exponentially in
time.
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Introduction & Motivation

In this lecture we show that flat boundary itself introduces
some element of compressibility into flow which from our
point of view can be considered as a reason of the
singularity formation on the boundary. We will consider
the 2D and 3D inviscid Prandtl equations which describes
the dynamics of the boundary layer, and demonstrate that
singularity is formed for the velocity gradient on the wall.
For 2D Euler numerically we show that for flows between
two parallel plates the maximal velocity gradient grows
exponentially in time on the wall and the vorticity gradient
has a tendency for double exponential growth there. This
process is nothing more than breaking (or folding for 2D
Euler) phenomenon which is well known in gas dynamics
since the classical works of famous Riemann.
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Basic equations and mixed Lagrangian-Eulerian description

The inviscid Prandtl equation for 2D flows is written for the
velocity component parallel to the blowing plane y = 0:

ut + uux + vuy = −Px, ux + vy = 0

with the following initial-boundary conditions:
u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y), and
v|y=0 = 0, limy→∞ u(x, y, t) = U(x).

Here pressure P is independent on both y and t and
satisfying the Bernoulli law:

U2(x)

2
+ P (x) = const.

. Subscripts here and everywhere below mean derivatives.
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Basic equations and mixed Lagrangian-Eulerian description

NOTE: The Prandtl equation assumes that the along surface
scale L much larger the boundary layer thickness h: L≫ h.
Hence one can see from incompressibility condition that
u/L ≈ v/h, i.e. u≫ v. As a result, the pressure P = P (x). It
gives the Prandtl equations

ut + uux + vuy = −Px, ux + vy = 0
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Basic equations and mixed Lagrangian-Eulerian description

Within the Prandtl approximation for inviscid flows it is
possible to introduce the vorticity as

ω = −
∂u

∂y

which satisfies the equation of the same form as for the 2D
Euler fluids:

ωt + uωx + vωy = 0.

Thus, ω is the Lagrangian invariant. By this reason, its values
will be bounded at all t > 0. However, for another components
of the velocity gradient such restrictions are absent. As we
will see below, ux as well as vy can take arbitrary values, in
particular, infinite ones.
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Basic equations and mixed Lagrangian-Eulerian description

For Px = 0, u is a Lagrangian invariant. Let n be some
Lagrangian quantity (advected by the fluid), obeys the
equation

nt + unx + vny = 0, ux + vy = 0.

For its solution n = n(x, y, t), define inverse function
y = y(x, n, t). In this case we have new independent
Lagrangian variable n and old Eulerian coordinate x (note, for
the Prandtl equation such transformation was introduced first
time by Crocco). Transition to this description is the mixed
Eulerian-Lagrangian one which represents non-complete
Legendre transformation. Fixing n in y = y(n, x, t) yields the n
-level line and therefore this transform is the transition to the
movable curvilinear system of coordinates.
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Basic equations and mixed Lagrangian-Eulerian description

Then we find how derivatives with respect to variables (x, y, t)

(the l.h.s) and derivatives relative to (x, n, t) (the r.h.s) are
connected with each other:

∂f

∂t
=

1

yn
[ftyn − fnyt],

∂f

∂x
=

1

yn
[fxyn − fnyx],

∂f

∂y
=

fn
yn
.

Substitution of these transforms into the equation of motion
for n gives the kinematic condition, well known for
free-surface hydrodynamics:

yt + uyx = v.
Nonlinear dynamics of slipping flows – p. 13



Basic equations and mixed Lagrangian-Eulerian description

Introduce streamfunction ψ so that u = ψy, v = −ψx. By
means of formulas for derivatives these relations read as

u =
1

yn
ψn, v = −ψx +

yx
yn
ψn.

Substitution of these formulas into the equation for y results
in the linear relation between y and ψ:

yt = −ψx.
Note, that in this equation all derivatives are taken for fixed n.

This equation can be easily resolved by introducing the
generating function θ(x, n, t):

y = θx, ψ = −θt.

To find θ(x, n, t) one needs to know dynamics of the velocity.
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Solution to the inviscid Prandtl equation

Consider first Px = 0. In this case for the inviscid Prandtl
equation we have Eq.

u = 1
yu
ψu,

which after substitution of θ transforms into

∂θu
∂t

+ u
∂θu
∂x

= 0.

This equation evidently has the following solution:

θu = F (x− ut, u)

where F is an arbitrary smooth function determined from the
boundary-initial conditions. Integration with respect to u yields

θ =

∫ u

f(x,t)

F (x− zt, z)dz + g(x, t).

Nonlinear dynamics of slipping flows – p. 15



Solution to the inviscid Prandtl equation

Here f(x, t) and g(x, t) are another arbitrary functions to be
defined from the B-I conditions.
It is worth noting that at y = 0 and Px = 0 the inviscid Prandtl
equation is nothing more than the Hopf equation

ut + uux = 0,

which solution is written in the following implicit form (simple
Riemann wave)

u = u0(a), x = a+ u0(a)t

or
u = u0(x− ut).

This means that on the boundary we have breaking, i.e. the
formation of singularity in a finite time.
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Solution to the inviscid Prandtl equation

Breaking happens when the derivative

∂u

∂x
=

u′0(a)

1 + u′0(a)t

at some point x = x∗ first time, t = t∗, becomes infinite. It is
evident that t∗ = mina [−1/u′0(a)] . Then it is possible to
establish that the general solution is matched with the
boundary conditions at y = 0 if one puts

f(x, t) = u(x, 0, t)

(this is solution of the Hopf equation) and g(x, t) = 0 so that

y =

∫ u

f(x,t)

∂

∂x
F [x− zt, z]dz

ψ = −

∫ u

f(x,t)

∂

∂t
F [x− zt, z]dz.

Nonlinear dynamics of slipping flows – p. 17



Solution to the inviscid Prandtl equation

Near the breaking point,

ux ≃ −
1

τ + β(∆a)2

where τ = t∗ − t, ∆a = a− a∗.
Thus, this dependence demonstrates a self-similar
compression, ∆a ∝ τ 1/2. The denominator, up to the constant
multiplier C, coincides with the Jacobian,
J = ∂x/∂a = C (τ + βa2) , where we put a∗ = 0. Integration of
this equation gives the cubic dependence:
x = C (τa+ βa3/3). Thus, in the physical space we get more
rapid compression than in the a-space : x ∝ τ 3/2.
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Solution to the inviscid Prandtl equation

For βa2 ≫ τ , the Jacobian becomes time-independent,
J ∼ x2/3. Hence, as τ → 0 we arrive at the singularity for ux,
ux ∝ x−2/3 . Any time changes of ux happen at the narrowing
region in the a-space, a ∝ τ 1/2, or equivalently at x ∝ τ 3/2. It
results in the following self-similar asymptotics,

ux ≃
1

τ
F (ξ), ξ =

x

τ 3/2

where function F (ξ) as ξ → ∞ is ∼ ξ−2/3. Hence we have the
power law:

max |ux| ∝ ℓ−2/3.

This is a general asymptotics for folding, independently
whether the singularity happens in finite or infinite time.
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Solution to the inviscid Prandtl equation

For arbitrary dependence P (x) a solution is found from
integration of ODEs:

d

dt
u = −Px,

d

dt
x = u,

which are equivalent to the Newton equation: ẍ = −Px. The
first integral (energy) E(a) = ẋ2/2 + P (x) = u20(a)/2 + P (a),

allows to define the mapping x = x(a, t). The breaking time t∗
is found as a minimal root T (> 0) for equation J(a, T ) = 0,

where t∗ = mina T (a) and J = ∂x/∂a .
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Behavior for the vorticity gradients on the boundary

Now calculate how ω behaves at the breaking point. Remind,
ω = −uy is the Lagrangian invariant.
For simplicity consider the pressureless case. Differentiation
of the vorticity equation with respect to x and then putting
y = 0 where v = 0 and vx = 0 yield the following

∂ωx

∂t
+ u

∂

∂x
ωx = −uxωx.

The equations for characteristics are
dx/dt = u(x, t), dωx/dt = −uxωx. Substitution of
ux ≃ (t− t∗)

−1 at the breaking point gives the same singular
behavior for ωx there:

ωx ≃
A

t− t∗
.
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Solution to the 2D inviscid Prandtl equation

Concluding this part, note that singularities for the velocity
gradient on the boundary is a result of collision of two
counter-propagating slipping flows. In the first simulations
(Dommelen and Shen, 1980; Hong and Hunter, 2003) this
interaction was shown to lead to the formation of jets in
perpendicular to the boundary direction. Breaking (as a
folding happening in a finite time) for the slipping flows in the
2D Prandtl equation becomes possible because the pressure
gradient normal to the boundary can not prevent the
formation of jets.
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Folding of the slipping flows for the 2D Euler equation

Now consider slipping flows within the 2D Euler equation
between two parallel plates and present numerical results for
folding of such flows which develops on the plate boundary.
As shown by Kiselev and Šverák (2014) for the 2D Euler flows
inside a disk for some initial data the gradient of ω exhibits
double exponential growth in time with maximum value on the
boundary. Our numerical results are in the correspondence
with this paper. In particular, we have observed that max |ux|

at the wall grows in time approximately exponentially like for a
disk. This results in the double exponential growth of the
vorticity gradient for the 2D Euler flows. This process can be
considered as folding with typical dependence between
growing max |ux| and its narrowing in time width ℓ:
max |ux| ∝ ℓ−2/3.
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Folding of the slipping flows for the 2D Euler equation

Numerically we solve the 2D Euler equation for ω

ωt + uωx + vωy = 0

for flows between two rigid plates y = 0 and y = h, with slip
boundary conditions (BC), v(x, 0) = v(x, h) = 0, and
periodical BC along x. The velocity components u and v are
found through the streamfunction ψ. For ψ we use the zero
BC at y = 0 and y = h. Such choice corresponds to the
absence of the flow with a constant velocity along x-direction.
For integration of the equations we used the pseudo-transient
method and Peaceman-Rachford scheme. The accuracy for
the first one was ||∆ψ + ω||2 ≤ 10−7. The kinetic energy in our
simulations was conserved not worth than 10−6.
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Folding of the slipping flows for the 2D Euler equation

Now we present results of our simulations for the following
initial conditions (IC):
ψ(x, y, 0) = −By(y − h)2 sin x; h = 2, B = 0.1. These IC were
chosen so that the folding point appears at x = 0 on the
boundary y = 0.
At first, the spatiotemporal dependencies of velocity were
found numerically and then the temporal evolution of its
gradient was determined. Analysis of the distribution of the
velocity gradient showed that for the IC almost from the very
beginning its maximum is concentrated on the boundary y = 0

in the vicinity of the point x = 0 which corresponds to the
folding point. Around this point the parallel velocity u behaves
almost like for overturning describing by the Hopf equation.

Nonlinear dynamics of slipping flows – p. 25



Folding of the slipping flows for the 2D Euler equation

Black line corresponds to t = 0, red – t = 1, blue – t = 2,
green – t = 5.
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Figure 1: Dependencies of the slipping (y = 0) ve-

locity as a function of x at different moments of time.
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Folding of the slipping flows for the 2D Euler equation

With time increasing ux is seen to transform into a cusp. ux
becomes more and more negative.
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Figure 2: Dependencies of the slipping ux as a func-
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Folding of the slipping flows for the 2D Euler equation

This figure demonstrates the exponential growth for maximum
|ux|.The blacks are the numerical results, the red is ∝ eγ1t with
γ1 = 0.44.
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Figure 3: Time dependence of max |ux| for the slip-

ping flow (logarithmic scale).
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Folding of the slipping flows for the 2D Euler equation

The thickness ℓ shows an exponential decrease.
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Figure 4: Spatial thickness of |ux| for the slipping

(y = 0) flow as a function of time. Blacks are numer-

ical results, red is the slope ∝ e−γ2t with γ2 = 0.7.
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Folding of the slipping flows for the 2D Euler equation
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Figure 5: max |ux| versus thickness ℓ. Black dashed

line is numerics, and red is the power dependence

max |ux| ∝ ℓ−2/3.
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Folding of the slipping flows for the 2D Euler equation

Such behavior means that the power law dependence arises
between max |ux| and ℓ,

max |ux| ∝ ℓ−α,

with exponent α ≈ 2/3. Thus, this process for the slipping
flow can be considered as a folding.
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Folding of the slipping flows for the 2D Euler equation

The folding results in the formation of jet in transverse
direction to the boundary y = 0.
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Figure 6: Streamlines at t = 5 in the neighborhood
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Folding of the slipping flows for the 2D Euler equation

This Fig. shows the process of the jet formation for the
streamfunction levels ψ = ±0.01 (plus corresponds to
negative x, minus to x > 0). The fixed difference ∆ψ = 0.02

means that the fluid flux between lines ψ = ±0.01 remains
constant, but the region between them with time becomes
more narrow that corresponds to the velocity increase in
perpendicular direction relative to the slipping flow.
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Folding of the slipping flows for the 2D Euler equation
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Figure 7: Behavior of streamfunction levels ψ =

±0.01 at different times.
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Folding of the slipping flows for the 2D Euler equation

The physical reason of the jet appearance is connected with
collision of two counter-propagating slipping flows.
Exponential growth of |ux| should promote the vorticity
gradient increase during the folding process. It follows from
the equation for di-vorticity at y = 0:

∂ωx

∂t
+ u

∂

∂x
ωx = −uxωx.

This equation can be solved by the method of characteristics:
dx/dt = u(x, t), dωx/dt = −uxωx. From the second equation
we get double exponential growth for ωx if increase of ux is
exponential:

logωx = −

∫ t

uxdt
′.
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Folding of the slipping flows for the 2D Euler equation
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Figure 8: Dependence of ωx at x = 0 (logarithmic

scale) versus time. Dashed line shows exponential

behavior at initial times. Nonlinear dynamics of slipping flows – p. 36



Folding of the slipping flows for the 2D Euler equation

As already noted, at the folding region ux < 0 . If max |ux|

increases exponentially in time for the slipping flow then ωx

will have a double exponential growth in time. Our numerical
simulations support this conclusion. In the logarithmic scales
as it is seen from Fig. 8 initially the growth of lnωx at the
folding point x = 0 looks like exponential straight line) but at
the later stage one can see positive deviation from this line.
ωx grows exponentially faster that is in accordance with the
theoretical arguments. From another side, the fitting for
dependence max |ux| indicates its exponential in time
increase. If it is so then Fig. 8 can be considered as a certain
conformation in the favor to existence of the double
exponential growth of ωx. Thus, our numerical results
correspond to those by Kiselev and Šverák for the Eulerian
flow inside a disk. Nonlinear dynamics of slipping flows – p. 37



Breaking in the 3D inviscid Prandtl equations

The 3D inviscid Prandtl equations have the form

ut + (u∇)u+ vuz = −∇P (r), (∇u) + vz = 0

where r = (x, y) and u are, respectively, coordinates and
velocity components parallel to the wall, ∇ = (∂x, ∂y), v is
the normal (‖z) velocity component.

Hence for slipping boundary conditions we arrive at the
2D Hopf equation

ut + (u∇)u = −∇P (r)

which also gives breaking.
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Breaking in the 3D inviscid Prandtl equations

Consider for simplicity the case P (r) = const. Then the
velocity gradient Uij = ∂ui/∂xj satisfies the following matrix
equation

dU

dt
= −U2

which solution has the form

U = U0(a)(1 + U0(a)t)
−1

where U0(a) and a are the initial values of U and positions of
fluid particles.
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Breaking in the 3D inviscid Prandtl equations

Expanding U0(a) through the projectors Pα yields

U =
∑
α

λαPα

1 + λαt

Hence it is seen that the breaking time

t0 = min
α,a

(−λα)
−1.

Near t = t0

U ∝ (t0 − t)−1

with the main contribution originating from the eigen value
corresponding to t0.
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Breaking in the 3D inviscid Prandtl equations

This gives simultaneous singularities for both symmetric part
(stress tensor)

S = 1/2(U + UT )

and antisymmetric part (vorticity)

Ω = U − UT .

Singularities for both parts have the cusp form, like in the 1D
case. Note that in this case, unlike 1D where the breaking
criterion is written as u′0 < 0, we have a few restrictions on λ
which are defined from quadratic equation. The first condition
is that eigen values λ should be real. Secondly, λ has to take
negative values.
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Breaking in the 3D inviscid Prandtl equations

As we see breaking of the slipping flows in 2D Prandtl and 2D
Euler is accompanied by the appearance of jets in the
perpendicular direction to the slipping boundary. The same
situation takes place in 3D (at least, for the inviscid Prandtl
equations). From another side, breaking (or folding
happening in a finite time) in the inviscid Prandtl
approximation for the general initial conditions should
produce growth of the perpendicular to the slipping boundary
vorticity. Combination of these both factors gives an indication
for understanding a mechanism of tornado generation.
As we see breaking of the slipping flows in 2D Prandtl and 2D
Euler is accompanied by the appearance of jets in the
perpendicular direction to the boundary. The same situation
takes place in 3D inviscid Prandtl equations.
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Breaking in the 3D inviscid Prandtl equations

From another side, breaking in the 3D Prandtl equations
should produce growth of the vorticity. Combination of these
both factors gives an indication for understanding a
mechanism of tornado generation. Interesting to note that
equation for vorticity Ω at z = 0 has the form

Ωt + (u∇)Ω = −divu Ω,

which is the same for both the inviscid Prandtl equations and
the Euler equation at the rigid boundary.
Hence one can see that growth of Ω is possible if divu < 0.
Thus, the growth of the vorticity (namely, rotation) is
correlated with negative value of divu. The latter gives a sink
(or a funnel) of the slipping flow into the maximal vorticity
region. Just this is observed for many tornado.
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Conclusion

We have developed a new concept of the formation of big
velocity gradients with the blow-up behavior or with the
exponential in time increase for the slipping flows in
incompressible inviscid fluids. These processes develop
as a folding due to compressible character of the slipping
flows.

For the 2D inviscid Prandtl equation we have developed
the mixed Lagrangian – Eulerian description based on the
Crocco transformation.

Application of this description to the inviscid Prandtl
equation allows to construct its general solution written in
the implicit form.
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Conclusion

It has been demonstrated that for the inviscid Prandtl
equation appearance of the finite-time singularity can
happen on the wall.

For 2D Euler flows we have numerically found that
maximum of the velocity gradient is developed on the
plate with exponential increase in time. Simultaneously,
the vorticity gradient has been shown to demonstrate the
double exponential growth in time on the boundary.

Breaking of 3D Prandtl slipping flows leads to blow-up of
both symmetric (stress tensor) and antisymmetric
(vorticity) parts of velocity gradient on the the rigid
boundary. The vorticity growth is correlated with
appearance of jet perpendicular to the boundary that is
the property of the tornado type.
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