QUANTUM BUTTERFLY EFFECT WITHOUT FALSE POSITIVES

Dmitrii A. Trunin

Moscow Institute of Physics and Technology, 141701, Institutskiy pereulok 9, Dolgoprudny, Russia Lebedev Physical Institute, 119991, Leninskiy prospect 53, Moscow, Russia

(3)

dmitriy.trunin@phystech.edu

Abstract

Out-of-time order correlators are widely used as a measure of quantum chaos and quantum butterfly effect, but give false-positive quantum Lyapunov exponents in integrable systems with unstable fixed points. I suggest an alternative measure of quantum chaos, which does not have this problem. To illustrate the approach, I calculate true quantum Lyapunov exponents numerically in the Lipkin-Meshkov-Glick and Feingold-Peres models and analytically in the large-N vector mechanics.

I. False signatures of quantum chaos in OTOCs

4. Feingold-Peres model

• To study the behavior of the OTOC and LOTOC in a truly chaotic system, we consider the Feingold-Peres (FP) model:

- $\hat{H}_{\rm FP} = \hat{x}_1 + \hat{x}_2 + 4\hat{z}_1\hat{z}_2,$ (7)
- where $(\hat{x}_i, \hat{y}_i, \hat{z}_i)$ are two independent rescaled SU(2) spin operators.
- In the semiclassical limit $S \rightarrow \infty$, FP model has positive LEs for the majority of initial conditions, so $\bar{\kappa}_{cl} \approx 0.53$, see figure (a).
- It also has two isolated saddle points $x_1 = x_2 = \pm 1$, where $\partial z_i(t; \mathbf{z}_0) / \partial z_{0i} \sim e^{\sqrt{3}t}$

• Quantum chaos and quantum butterfly effect are frequently defined using the out-of-time-order correlation functions (OTOCs):

> $OTOC(t) = \frac{1}{N\hbar^2} \sum_{i,j} \left\langle \left[\hat{z}_i(t), \hat{z}_j(0) \right]^{\dagger} \left[\hat{z}_i(t), \hat{z}_j(0) \right] \right\rangle \sim \left\langle e^{2\kappa_{cl}t} \right\rangle \sim e^{2\kappa_{q}t},$ (1)

where $\langle \cdots \rangle$ denotes the averaging over a thermal ensemble, N is the phase space dimension, z = (q, p) are canonical coordinates, κ_{cl} is the largest Lyapunov exponent (LE), and κ_q is the **(naive) quantum LE**.

- Namely, one usually defines quantum chaos through $\kappa_q > 0$
- Classical chaos is defined through $\bar{\kappa}_{cl} = \langle \kappa_{cl} \rangle > 0$ (Kolmogorov system)
- Definition $\kappa_q > 0$ does not reproduce $\bar{\kappa}_{cl} > 0$ in the semiclassical limit!

2. The LOTOC and the true quantum LE

• To close this loophole, we suggest an alternative measure of quantum chaos and quantum butterfly effect — the **logarithmic OTOC** (LOTOC):

$$C(t) = \left\{ \log\left(\frac{1}{N\hbar^2} \sum_{i,j} \left[\hat{z}_i(t), \hat{z}_j(0)\right]^{\dagger} \left[\hat{z}_i(t), \hat{z}_j(0)\right] \right) \right\},$$
 (2)

• The true quantum LE $\bar{\kappa}_q$ is extracted from the linear growth of the LOTOC up to the Ehrenfest time:

$$C(t) \approx 2\bar{\kappa}_q t + o(t), \quad 1 \ll t \ll t_E,$$

where o(t) grows slower than linearly (e.g., $o(t) \sim \log t$).

• In FP model, **both OTOC and LOTOC grow chaotically** until the "chaotic" Ehrenfest time:

> OTOC(t) ~ $e^{2\kappa_q t}$ and $C(t) \approx 2\bar{\kappa}_q t$ for $1 \leq t \leq \log(1/\hbar)$. (8)

• From numerics, we again estimate $\kappa_q = \kappa_s/2$ and $\bar{\kappa}_q = \bar{\kappa}_{cl} > 0$

5. Nonlinear vector mechanics

• We argue that $\bar{\kappa}_q \rightarrow \bar{\kappa}_{cl}$ as $\hbar \rightarrow 0$.

• In other words, the LOTOC suggests a proper definition of the quantum butterfly effect — the exponential sensitivity to *almost all* small perturbations ensured by a positive true qLE, $\bar{\kappa}_{cl} > 0$

3. Lipkin-Meshkov-Glick model

• As an illustrative example of an **integrable system** with an isolated saddle point, we consider the Lipkin-Meshkov-Glick model:

$$\hat{H}_{\rm LMG} = \hat{x} + 2\hat{z}^2, \tag{4}$$

where $\hat{x}, \hat{z} = \hat{S}_x/S, \hat{S}_z/S$ are rescaled SU(2) spin operators with total spin S. • In the classical limit $S \to \infty$, this model has an isolated saddle point x = 1, where $\partial z_i(t; \mathbf{z}_0) / \partial z_{0i} \sim e^{\kappa_s t}$ with $\kappa_s = \sqrt{3}$.

• The OTOC grows exponentially up to the "chaotic" Ehrenfest time,

$$DTOC(t) \sim e^{2\kappa_q t} \quad \text{for} \quad 1 \leq t \leq \log(1/\hbar).$$
(5)

• The LOTOC grows logarithmically until the "integrable" Ehrenfest time:

 $C(t) \sim \log t$ for $1 \leq t \leq 1/\hbar$ (6)

• From numerics, we estimate $\kappa_q = \kappa_s/2$ and $\bar{\kappa}_q = \bar{\kappa}_{cl} = 0$

• Now let us consider the system of $N \gg 1$ nonlinearly coupled oscillators with an explicitly broken O(N) symmetry:

$$\hat{H} = \frac{1}{2}\hat{p}_i^2 + \frac{1}{2}m^2\hat{x}_i^2 + \frac{\lambda}{4N}\hat{x}_i^2\hat{x}_j^2 - \frac{\lambda}{4N}\hat{x}_i^4.$$
 (9)

• We estimate the LOTOC and the true quantum LE using the **replica trick**:

$$C(t) = \lim_{n \to 0} \frac{\partial C_n(t)}{\partial n},$$
(10)

where we introduce the replica OTOC (ROTOC):

$$C_{n}(t) = \left\{ \left(\frac{1}{N\hbar^{2}} \sum_{i,j} \left[\hat{z}_{i}(t), \hat{z}_{j}(0) \right]^{\dagger} \left[\hat{z}_{i}(t), \hat{z}_{j}(0) \right] \right)^{n} \right\}.$$
 (11)

• Substituting the exponentially growing ansatz $C_n(t) \sim e^{2\kappa_n t}$ to the Dyson-Schwinger equation on the resummed ROTOC, we estimate the replica LE:

$$\kappa_{n} = n \left[(2n-1)!! \right]^{\frac{1}{2n}} \frac{8\sqrt{6}}{N} \frac{\lambda \tilde{m}}{(\tilde{\mu}\tilde{m})^{3}} \frac{e^{\tilde{\beta}\tilde{m}/2}}{e^{\tilde{\beta}\tilde{m}} - 1},$$
(12)

• The true quantum LE, $\bar{\kappa}_q \approx 0.7 \sqrt[4]{\lambda T}/N$, found from Eq. (10), is approximately two times smaller than the naive one, $\kappa_q \approx 1.3 \sqrt[4]{\lambda T}/N$.

• From the semiclassical perspective, this discrepancy arises because the LOTOC measures the average of LEs over the entire phase-space, whereas the OTOC singles out only the points with the largest LEs.

