QUANTUM BUTTERFLY EFFECT WITHOUT FALSE POSITIVES [~ ¥

Dmitrii A. Trunin P|

/\ uPT.

‘ Abstract |

Out-of-time order correlators are widely used as a measure of quantum chaos
and quantum butterfly effect, but give false-positive quantum Lyapunov expo-
nents in integrable systems with unstable fixed points. | suggest an alternative
measure of quantum chaos, which does not have this problem. To illustrate
the approach, | calculate true quantum Lyapunov exponents numerically in
the Lipkin-Meshkov-Glick and Feingold-Peres models and analytically in the

large-N vector mechanics.

| 1. False signatures of quantum chaos in OTOCs |

* Quantum chaos and quantum butterfly effect are frequently defined using
the out-of-time-order correlation functions (OTOCs):

OTOC(t) = NLhQ > ([20), 2/ (0)]T [2:(8), £(0)]) ~ (e¥) ~ e, (1)

where (---) denotes the averaging over a thermal ensemble, N is the phase
space dimension, z = (q,p) are canonical coordinates, k. is the largest
Lyapunov exponent (LE), and x, is the (naive) quantum LE.

* Namely, one usually defines quantum chaos through ~, > 0
» Classical chaos is defined through % = (k) > 0 (Kolmogorov system)
* Definition ~, > 0 does not reproduce = > 0 in the semiclassical limit!

| 2. The LOTOC and the true quantum LE |

* To close this loophole, we suggest an alternative measure of quantum
chaos and quantum butterfly effect — the logarithmic OTOC (LOTOC):

(0 = {1on (3 DO 500 L0501 ) 2)

* The true quantum LE &, is extracted from the linear growth of the LOTOC
up to the Ehrenfest time:

C(t) ~ 2Rt + o(1),

where o(t) grows slower than linearly (e.g., o(t) ~ logt).

* We argue that <, - K, as h — 0.

* In other words, the LOTOC suggests a proper definition of the quan-
tum butterfly effect — the exponential sensitivity to almost all small

perturbations ensured by a positive true gLE, ., > 0

| 3. Lipkin-Meshkov-Glick model |

* As an illustrative example of an integrable system with an isolated saddle
point, we consider the Lipkin-Meshkov-Glick model:

]:]LMG =TI+ 27:’2, (4)
where 7,2 = S,/S5,5./S are rescaled SU(2) spin operators with total spin S.

* In the classical limit S — oo, this model has an isolated saddle point x = 1,
where 0z;(t;z0)/0z; ~ e with k, = /3.
* The OTOC grows exponentially up to the “chaotic” Ehrenfest time,

l <t << tg, (3)

OTOC(t) ~e*" for 15t <log(1/h). (5)
* The LOTOC grows logarithmically until the “integrable” Ehrenfest time:
C(t) ~logt for 15ts1/h (6)

* From numerics, we estimate x, = xk;/2 and k, = K, =0
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| 4. Feingold-Peres model |

* To study the behavior of the OTOC and LOTOC in a truly chaotic system,
we consider the Feingold-Peres (FP) model:
Hyp = &1 + 29 + 4212, (7)

where (z;,y;, 2;) are two independent rescaled SU(2) spin operators.
* In the semiclassical limit S - oo, FP model has positive LEs for the majority
of initial conditions, so k. ~ 0.53, see figure (a).
- It also has two isolated saddle points z; = x5 = +1, where 0z;(t; zy) /02, ~ eV
 In FP model, both OTOC and LOTOC grow chaotically until the “chaotic”
Ehrenfest time:
OTOC(t) ~e* and C(t) =2kt for 15t<log(1/h). (8)

» From numerics, we again estimate «, = k;/2 and k, = R > 0
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‘ 5. Nonlinear vector mechanics |

* Now let us consider the system of N > 1 nonlinearly coupled oscillators
with an explicitly broken O(N) symmetry:
gy Lo L oo A oo Ay

H = SPi +oME + T — o (9)
* We estimate the LOTOC and the true quantum LE using the replica trick:
. 0C,(1)
=] 1
C(t) = lim —"-=, (10)
where we introduce the replica OTOC (ROTOCQ):
1 A A A A n

0~ ([ 5 Z L0501 0,501 ) ) (1)

L,

 Substituting the exponentially growing ansatz C,(t) ~ e*! to the Dyson-
Schwinger equation on the resummed ROTOC, we estimate the replica LE:
1 8vV6 M efnl?
N (pm)ebm — 1’
* The true quantum LE, %, ~ 0.7v/ AT/ N, found from Eq. (10), is approximately
two times smaller than the naive one, x, ~ 1.3V AT/ N.

* From the semiclassical perspective, this discrepancy arises because the
LOTOC measures the average of LEs over the entire phase-space,
whereas the OTOC singles out only the points with the largest LEs.

(12)

kn=n[(2n-1)1]
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