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Abstract

Out-of-time order correlators are widely used as a measure of quantum chaos
and quantum butterfly effect, but give false-positive quantum Lyapunov expo-
nents in integrable systems with unstable fixed points. I suggest an alternative
measure of quantum chaos, which does not have this problem. To illustrate
the approach, I calculate true quantum Lyapunov exponents numerically in
the Lipkin-Meshkov-Glick and Feingold-Peres models and analytically in the
large-N vector mechanics.

1. False signatures of quantum chaos in OTOCs

• Quantum chaos and quantum butterfly effect are frequently defined using
the out-of-time-order correlation functions (OTOCs):

OTOC(t) =
1

Nh̵2∑
i,j

⟨[ẑi(t), ẑj(0)]
†
[ẑi(t), ẑj(0)]⟩ ∼ ⟨e

2κclt⟩ ∼ e2κqt, (1)

where ⟨⋯⟩ denotes the averaging over a thermal ensemble, N is the phase
space dimension, z = (q,p) are canonical coordinates, κcl is the largest
Lyapunov exponent (LE), and κq is the (naive) quantum LE.

• Namely, one usually defines quantum chaos through κq > 0

• Classical chaos is defined through κ̄cl = ⟨κcl⟩ > 0 (Kolmogorov system)
• Definition κq > 0 does not reproduce κ̄cl > 0 in the semiclassical limit!

2. The LOTOC and the true quantum LE

• To close this loophole, we suggest an alternative measure of quantum
chaos and quantum butterfly effect — the logarithmic OTOC (LOTOC):

C(t) = ⟨log(
1

Nh̵2∑
i,j

[ẑi(t), ẑj(0)]
†
[ẑi(t), ẑj(0)] )⟩ , (2)

• The true quantum LE κ̄q is extracted from the linear growth of the LOTOC
up to the Ehrenfest time:

C(t) ≈ 2κ̄qt + o(t), 1≪ t≪ tE, (3)

where o(t) grows slower than linearly (e.g., o(t) ∼ log t).
• We argue that κ̄q → κ̄cl as h̵→ 0.
• In other words, the LOTOC suggests a proper definition of the quan-
tum butterfly effect — the exponential sensitivity to almost all small
perturbations ensured by a positive true qLE, κ̄cl > 0

3. Lipkin-Meshkov-Glick model

• As an illustrative example of an integrable system with an isolated saddle
point, we consider the Lipkin-Meshkov-Glick model:

ĤLMG = x̂ + 2ẑ
2, (4)

where x̂, ẑ = Ŝx/S, Ŝz/S are rescaled SU(2) spin operators with total spin S.
• In the classical limit S → ∞, this model has an isolated saddle point x = 1,
where ∂zi(t;z0)/∂z0j ∼ eκst with κs =

√
3.

• The OTOC grows exponentially up to the “chaotic” Ehrenfest time,

OTOC(t) ∼ e2κqt for 1 ≲ t ≲ log(1/h̵). (5)

• The LOTOC grows logarithmically until the “integrable” Ehrenfest time:

C(t) ∼ log t for 1 ≲ t ≲ 1/h̵ (6)

• From numerics, we estimate κq = κs/2 and κ̄q = κ̄cl = 0

(a) (b)

4. Feingold-Peres model

• To study the behavior of the OTOC and LOTOC in a truly chaotic system,
we consider the Feingold-Peres (FP) model:

ĤFP = x̂1 + x̂2 + 4ẑ1ẑ2, (7)

where (x̂i, ŷi, ẑi) are two independent rescaled SU(2) spin operators.
• In the semiclassical limit S →∞, FP model has positive LEs for the majority
of initial conditions, so κ̄cl ≈ 0.53, see figure (a).

• It also has two isolated saddle points x1 = x2 = ±1, where ∂zi(t;z0)/∂z0j ∼ e
√
3t

• In FP model, both OTOC and LOTOC grow chaotically until the “chaotic”
Ehrenfest time:

OTOC(t) ∼ e2κqt and C(t) ≈ 2κ̄qt for 1 ≲ t ≲ log(1/h̵). (8)

• From numerics, we again estimate κq = κs/2 and κ̄q = κ̄cl > 0

(a) (b)

5. Nonlinear vector mechanics

• Now let us consider the system of N ≫ 1 nonlinearly coupled oscillators
with an explicitly broken O(N) symmetry:

Ĥ =
1

2
p̂2i +

1

2
m2x̂2i +

λ

4N
x̂2i x̂

2
j −

λ

4N
x̂4i . (9)

• We estimate the LOTOC and the true quantum LE using the replica trick:

C(t) = lim
n→0

∂Cn(t)

∂n
, (10)

where we introduce the replica OTOC (ROTOC):

Cn(t) = ⟨(
1

Nh̵2∑
i,j

[ẑi(t), ẑj(0)]
†
[ẑi(t), ẑj(0)] )

n

⟩ . (11)

• Substituting the exponentially growing ansatz Cn(t) ∼ e2κnt to the Dyson-
Schwinger equation on the resummed ROTOC, we estimate the replica LE:

κn = n [(2n − 1)!!]
1
2n
8
√
6

N

λm̃

(µ̃m̃)3
eβ̃m̃/2

eβ̃m̃ − 1
, (12)

• The true quantum LE, κ̄q ≈ 0.7
4
√
λT /N , found from Eq. (10), is approximately

two times smaller than the naive one, κq ≈ 1.3
4
√
λT /N .

• From the semiclassical perspective, this discrepancy arises because the
LOTOC measures the average of LEs over the entire phase-space,
whereas the OTOC singles out only the points with the largest LEs.
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